Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Cisplatin Binding and Inactivation of Mitochondrial Glutamate Oxaloacetate Transaminase in Cisplatin-Induced Rat Nephrotoxicity
Taku OZAKISei-ichi ISHIGUROHideaki ITOHKazuhisa FURUHAMAMitsuru NAKAZAWATetsuro YAMASHITA
Author information
JOURNAL FREE ACCESS

2013 Volume 77 Issue 8 Pages 1645-1649

Details
Abstract

Cisplatin is a widely used chemotherapeutic agent, but its use is limited by nephrotoxicity associated with mitochondrial dysfunction. Because its mechanisms are poorly understood, we aimed to identify the mitochondrial proteins targeted by cisplatin. We isolated renal mitochondrial proteins from Sprague-Dawley (SD) rats and performed cisplatin-affinity column chromatography. The proteins eluted were detected on SDS–PAGE and subjected to in-gel tryptic digestion and LC-MS/MS analysis. We identified glutamate oxaloacetate transaminase (GOT) and mitochondrial malate dehydrogenase (MDH). Next, we administered cisplatin intraperitoneally to SD rats to induce nephrotoxicity and assayed the activities of the enzymes. The results indicated that cisplatin caused a severe decrease in mitochondrial GOT activity on day 1 after cisplatin administration. Three d later, we also identified a decrease in mitochondrial MDH activity. Our results indicate that cisplatin binds to mitochondrial GOT and inhibits its activity, causing mitochondrial dysfunction and subsequent nephrotoxicity.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2013 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top