Characterization of BaTiO₃ crystals formed in aluminosilicate glasses and their laser patterning

Takayuki KOMATSU,[†] Takashi OIKAWA and Tsuyoshi HONMA

Department of Materials Science and Technology, Nagaoka University of Technology, 1603–1 Kamitomioka-cho, Nagaoka, Niigata 940–2188, Japan

BaTiO₃ crystals synthesized through the crystallization of $40BaO-40TiO_2-15SiO_2-5Al_2O_3$ glass were characterized from Raman scattering spectrum, second harmonic generation (SHG), and polarization measurements. The structure of BaTiO₃ nanocrystals (~70 nm) formed initially was suggested to be pseudo-cubic (small tetragonality), and perovskite-type ferroelectric BaTiO₃ crystals were formed in the heat-treatments at high temperatures of ~930°C. The lines consisting of BaTiO₃ crystals were patterned at the surface of CuO-doped glass by irradiations of continuous-wave Yb:YVO₄ lasers with a wavelength of 1080 nm. It was confirmed that BaTiO₃ being present in the laser-irradiated parts exhibits SHGs and, in particular, BaTiO₃ formed in the laser ablation region has a tetragonal structure and a Curie temperature of ~135°C.

©2013 The Ceramic Society of Japan. All rights reserved.

Key-words : BaTiO₃, Glass, Crystallization, Raman scattering spectrum, Second harmonic generation, Laser pattering

[Received March 1, 2013; Accepted April 12, 2013]

1. Introduction

Functional materials have been synthesized through various methods. Crystallization of glass is a unique method for the fabrication of transparent and dense condensed materials with desired shapes, nanostructures, and highly oriented crystals, and a crystallization technique has been applied to various glass systems in order to design active functional crystals with high performances such as second harmonic generation (SHG) or ferroelectricity. Barium titanate, BaTiO₃, exhibits various excellent optical and dielectric properties and is one of the most important inorganic materials which have been used practically in various electronic devices. It is, therefore, of interest and of importance to design crystallized glasses (glass-ceramics) consisting of perovskite-type ferroelectric BaTiO₃ crystals. Indeed, so far, several researchers have tried to fabricate crystallized glasses containing BaTiO₃ or Ba_{1-x}Sr_xTiO₃ crystals,¹⁾⁻¹⁸⁾ as summarized in Table 1, and for instance, Borrelli and Layton⁵⁾ observed a large electrooptic effect (EO) in transparent crystallized glasses with BaTiO₃ crystals.

Usually, crystallized glasses are fabricated by heat treatment of precursor glasses in an electric furnace, and the size, amount, and morphology of target crystals are designed by controlling heat treatment conditions (i.e., nucleation and crystal growth rates) and glass composition. In particular, in the case of BaTiO₃, it is impossible to fabricate bulk glasses using normal melt-quenching speeds in the binary BaO–TiO₂ system, and thus glass-forming oxides such as SiO₂ and B₂O₃ are required to be added, e.g., BaO–TiO₂–SiO₂, as shown in Table 1. Laser-induced crystallization in glass has also received much attention, because in which active crystals are patterned only in spatially selected parts.^{19)–22)} Patterning of active crystals in glasses will have a high potential for practical applications in various active devices. It is of interest to pattern BaTiO₃ crystals in glasses by using a

laser-induced crystallization technique. Yonesaki et al.¹³) tried to irradiate femtosecond (~120 fs) pulsed Ti: sapphire laser (wavelength: $\lambda = 800$ nm) to Na₂O–BaO–TiO₂–SiO₂ glasses and confirmed the formation of BaTiO₃ together with Ba₂TiSi₂O₈ crystals. The structure (i.e., cubic or tetragonal) of BaTiO₃ formed, however, has not been determined in their report.¹³)

The purpose of this study is to characterize BaTiO₃ crystals synthesized through the crystallization of BaO–TiO₂–SiO₂–Al₂O₃ glasses and to pattern crystal lines consisting of perovskite-type (tetragonal) BaTiO₃ at the glass surface by using laser irradiations. In the present study, a laser-induced crystallization technique called transition metal atom heat processing (TMAH) was applied,^{19)–23} in which continuous-wave (cw) Yb:YVO₄ lasers with $\lambda = 1080$ nm have been used. Using the TMAH technique, for instance, the present authors' group has succeeded in patterning ferroelectric LiNbO₃ crystal lines with high orientations.^{24)–27} The study on the laser patterning of BaTiO₃ crystal lines in glasses has not been, however, reported so far.

Experimental procedures

Glasses with the compositions of 40BaO–40TiO₂–15SiO₂– 5Al₂O₃ (mol%) and 1CuO–40BaO–40TiO₂–15SiO₂–5Al₂O₃ (mol) were prepared using a conventional melt-quenching technique. Commercial powders of raw materials of BaCO₃, TiO₂, SiO₂, Al₂O₃, and CuO were mixed and melted in a platinum crucible at 1400°C for 1 h in air in an electric furnace. The melts were poured onto an iron plate and pressed to a thickness of ~1.5 mm with another iron plate. The glass transition, T_g , and crystallization peak, T_p , temperatures were determined using differential thermal analyses (DTA) at a heating rate of 10 K/min. The optical absorption spectrum for the CuO-doped sample was measured in the wavelength range of 250–2000 nm using a spectrometer (Shimadzu U-3120).

The crystalline phases formed by heat treatments were examined from X-ray diffraction (XRD) analyses (Cu K α radiation) at room temperature and micro-Raman scattering spectrum measurements (Tokyo Instruments Co., Nanofinder; Ar⁺ laser 488

[†] Corresponding author: T. Komatsu; E-mail: komatsu@mst. nagaokaut.ac.jp

1 5		
Glass composition (mol %)	Features	Ref.
xBaTiO ₃ -(100-x)BaAl ₂ Si ₂ O ₈	Dielectric constant of 1200	1)
(100-x-y)BaTiO ₃ - x SiO ₂ - y Al ₂ O ₃ , $x = 10-60$, $y = 0-20$	Lamellar shape	2),3)
BaTiO ₃ -SiO ₂ -Al ₂ O ₃	Low network former content	4)
BaTiO ₃ –SiO ₂	Electro-optic effect	5)
BaO-TiO ₂ -B ₂ O ₃	Glass formation, Crystalline phases	6)
15BaO-15TiO ₂ -70TeO ₂	Transparent, TeO ₂ glass former	7)
50BaO-20TiO ₂ -30B ₂ O ₃	Twin-roller quenching	8)
40BaO-30TiO ₂ -20SiO ₂ -7Al ₂ O ₃ -3AlF ₃	Direct crystallization	9)
42.9BaO-35.8TiO ₂ -14.3SiO ₂ -7.2Al ₂ O ₃	Size effect on dielectric property	10),11)
15BaO-15TiO ₂ -70TeO ₂	SHG, $d_{15} = 0.31 \text{ pm/V}$	12)
5Na2O-36BaO-39TiO ₂ -20SiO ₂	Femtosecond (120 fs) laser, dot	13)
60BaTiO ₃ -40Li ₂ B ₄ O ₇	BaTiO ₃ , Li ₂ B ₄ O ₇ , BaTi(BO ₃) ₂	14)
$60(Ba_{1-x}Sr_x)TiO_3-25SiO_2-15AlF_3$	Ferroelectric Ba _{1-x} Sr _x TiO ₃	15)
90(Ba _{0.7} Sr _{0.3})TiO ₃ -10(B ₂ O ₃ -xSiO ₂)	Kinetics, $E_a = 705 \text{ kJ/mol}$	16)
70(Ba _{0.7} Sr _{0.3})TiO ₃ -30(Al ₂ O ₃ -SiO ₂)	Kinetics, $E_a = 432 \text{ kJ/mol}$	17)
$Ba_0 GSr_0 TiO_3 - SiO_2 - B_2O_3 - K_2O - La_2O_3$	Kinetics, $E_a = 762 \text{kJ/mol}$	18)

Table 1. Glass composition and features for the crystallization of BaTiO₃ and (Sr,Ba)TiO₃ in glasses reported so far¹⁾⁻¹⁸⁾

nm). SHGs of heat-treated samples were measured by using a Maker fringe technique with Q-switch Nd:YAG laser ($\lambda =$ 1064 nm). The CuO-doped sample was mechanically polished to mirror finish with CeO₂ powders, and cw Yb:YVO₄ fiber lasers with $\lambda =$ 1080 nm were irradiated onto the surface of the glass using objective lens (50 times magnification). The sample was put on the stage and mechanically moved during laser irradiations to construct crystal lines. The morphology and crystalline phase of lines were examined from polarized optical microscope (POM), confocal scanning laser microscope (CSLM) (Olympus-OLS 3000) observations, micro-Raman scattering spectrum, and SHG measurements.

3. Results and discussion

As shown in Table 1, several glass systems and compositions have been examined for the preparation of crystallized glasses with BaTiO₃ crystals, and it has been recognized that the system of BaO-TiO₂-SiO₂-Al₂O₃ is a good candidate.^{2)-4),9)-11) Kokubo} et al.²⁾ examined the glass-forming region and the crystallization of BaTiO₃ in the BaO-TiO₂-SiO₂-Al₂O₃ system and reported that the maximum content of BaO and TiO₂ is around 40 mol %. We examined the crystallization behavior of BaTiO₃ in several glasses with different compositions such as 40BaO-30TiO₂-20SiO₂-10Al₂O₃ and 35BaO-45TiO₂-15SiO₂-5Al₂O₃, and finally we selected a glass with the composition of 40BaO-40TiO₂-15SiO₂-5Al₂O₃ containing a large amount of BaO and TiO_2 in this study. In a previous study,²⁸⁾ we examined the laserinduced crystallization behavior of a glass with the composition of 40BaO-40TiO₂-20B₂O₃ and found that nonlinear optical Ba₃Ti₃O₆(BO₃)₂ crystals are patterned.

3.1 Usual crystallization in an electric furnace

Prior to the patterning of $BaTiO_3$ crystal lines by laser irradiations, the usual crystallization behavior in an electric furnace for 40BaO-40TiO_2-15SiO_2-5Al_2O_3 glass (designated here as BTSA glass), i.e., homogeneous and constant heating for a whole part of the glass, was examined, and the crystal structure and dielectric properties of BaTiO_3 crystals synthesized were characterized.

The melt-quenched BTSA sample prepared in this study maintained a good optical transparency, and any inhomogeneous microstructures such as large-scaled phase separations and partial crystallizations were not detected. The amorphous state in the melt-quenched sample was confirmed from the XRD pattern, in

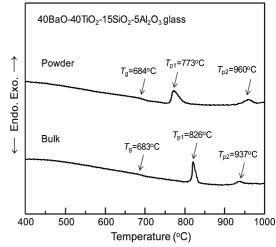


Fig. 1. DTA patterns for the bulk and powder samples of 40BaO–40TiO₂–15SiO₂–5Al₂O₃ glass. $T_{\rm g}$ and $T_{\rm p}$ are the glass transition and crystallization peak temperatures, respectively. The heating rate was 10 K/min.

which only halo pattern was observed. The DTA patterns for the bulk and powder samples of the BTSA glass are shown in **Fig. 1**, indicating the presence of two exothermic peaks. They provide the values of $T_g = 683^{\circ}$ C, $T_{p1} = 826^{\circ}$ C, and $T_{p2} = 937^{\circ}$ C for the bulk sample and $T_g = 684^{\circ}$ C, $T_{p1} = 773^{\circ}$ C, and $T_{p2} = 960^{\circ}$ C for the powder sample. The difference in the values of T_{p1} and T_{p2} for bulk and powder samples suggests that the main crystallization mechanism in the BTSA glass would be surface crystallization. The large difference between T_g and T_{p1} in the bulk sample, i.e., $\Delta T = T_{p1} - T_g = 143^{\circ}$ C, indicates that the thermal stability against crystallization is relatively high. Usually, it has been recognized that glasses showing $\Delta T > 100^{\circ}$ C tend to crystallize easily. For instance, $30MoO_3$ - $50ZnO-20B_2O_3$ glass has the value of $\Delta T = 40^{\circ}$ C and forms α -ZnMoO₄ crystals easily.²⁹

The XRD patterns for the samples obtained by heat treatments at $T_{p1} = 826^{\circ}$ C for 5 h, $T_{p2} = 937^{\circ}$ C for 5 h, and $T = 1200^{\circ}$ C for 3 h are shown in **Fig. 2**. It is seen that BaTiO₃ crystals are formed in all heat-treated samples. In particular, all XRD peaks observed for the sample heat-treated at T_{p1} are assigned to the BaTiO₃ crystalline phase (the Joint Committee on Powder Diffraction

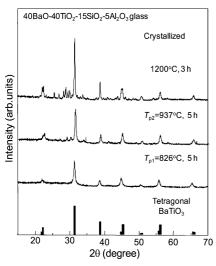


Fig. 2. XRD patterns for the heat-treated samples in $40BaO-40TiO_2-15SiO_2-5Al_2O_3$ glass. The XRD pattern for the tetragonal BaTiO_3 is taken from the JCPDS card (005–0626).

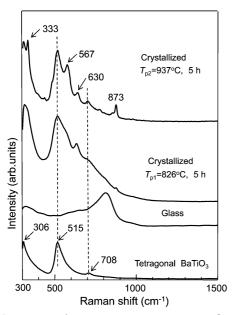


Fig. 3. Raman scattering spectra at room temperature for the heat-treated samples in $40BaO-40TiO_2-15SiO_2-5Al_2O_3$ glass.

Standards (JCPDS): 005–0626), demonstrating that the first exothermic peaks in the DTA pattern (Fig. 1) corresponds to the crystallization of BaTiO₃. The average particle size of BaTiO₃ crystals formed in this heat-treated ($T_{p1} = 826^{\circ}$ C for 5 h) sample was estimated from the peak width of XRD pattern by using Scherrer's equation, in which the peak corresponding to the (101) plane appeared at $2\theta \sim 31.6$ was used for the calculation. The value of ~ 70 nm was obtained, suggesting the formation of BaTiO₃ nanocrystals. In the samples heat-treated at T_{p2} and 1200°C, other crystalline phase (unidentified) is also formed.

The Raman scattering spectra at room temperature for the glass and heat-treated samples are shown in **Fig. 3** together with the data for tetragonal BaTiO₃ crystals (commercially available). Three Raman peaks observed at 306, 515, and 708 cm⁻¹ in tetragonal BaTiO₃ (*P*4*mm*) are known to be characteristic for the tetragonal phase, i.e., the peaks at ~710, ~515, and ~305 cm⁻¹

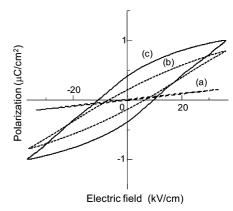


Fig. 4. Relationship between polarization and electric field for the heat-treated samples in 40BaO-40TiO₂-15SiO₂-5Al₂O₃ glass. The curves of (a), (b), and (c) are for the sample heat-treated at $T_{\rm p1}$ (826°C), the sample heat-treated at $T_{\rm p2}$ (937°C), and the sample heat-treated at 1200°C, respectively.

are assigned to the Raman-active modes of $E(4LO) + A_1(3LO)$, $E(4TO) + A_1(3TO)$, and E(3TO) + E(2LO), respectively.³⁰⁾⁻³²⁾ In the glass, a broad peak being typical for glassy materials is observed at $\sim 820 \,\mathrm{cm}^{-1}$. In the sample heat-treated at $T_{\rm pl} =$ 826°C for 5 h, the peak having a strong intensity is observed at 515 cm^{-1} , and the other peak is detected at 630 cm^{-1} . It should be pointed out that a broad peak with a small intensity is also observed at \sim 708 cm⁻¹ for this heat-treated ($T_{p1} = 826^{\circ}$ C) sample. Furthermore, the broad peak observed at \sim 820 cm⁻¹ in the glass was almost disappeared in this heat-treated $(T_{p1} = 826^{\circ}C)$ sample. In the sample heat-treated at $T_{p2} = 937^{\circ}$ C, several peaks are observed at \sim 306, 333, 515, 567, 630, 708, and 873 cm⁻¹. It is, therefore, considered from Fig. 3 that at least tetragonal BaTiO₃ crystals are formed in the sample heat-treated at $T_{p2} =$ 937°C. At this moment, the peaks appeared at 333, 567, 630, and 873 cm⁻¹ are not assigned, but would be due to the other crystalline phase (unidentified) (Fig. 2).

The relationship between polarization and electric field for the heat-treated samples are shown in Fig. 4. Clear hysteresis curves are observed for the samples heat-treated at T_{p2} and 1200°C. On the other hand, the sample heat-treated at T_{p1} does not exhibit any clear hysteresis. The second harmonic (SH) intensity, i.e., the Maker fringe patterns, for the base glass and heat-treated samples are shown in Fig. 5. For SH intensity measurements, the incident angle of linearly polarized lasers against the surface of samples (thickness: 0.2 mm) was 90°, and linearly polarized incident lasers are rotated against the surface of samples. The relation between incident lasers and samples is shown schematically in Fig. 5. It is found that the SH intensity increases with increasing heat treatments temperature. In particular, clear and strong SHGs were observed for the samples heat-treated at 1200°C. The results shown in Figs. 2 to 5 suggest that BaTiO3 crystals present in the samples heat-treated at T_{p2} and 1200°C might be tetragonal, i.e., perovskite-type ferroelectric BaTiO₃. Furthermore, because any angular dependence in the Maker fringe patterns (Fig. 5) was not observed, BaTiO₃ crystals might be formed randomly without any distinct orientation. It is well known that a clear relationship exists between decreasing crystallite size ($<1 \,\mu$ m) and decreasing tetragonality, leading to the phase transition from tetragonal to cubic for BaTiO₃ particles below a critical size.³⁰⁾ Suzuki and Kijima³³⁾ reported that BaTiO₃ nanoparticles under 30 nm are assigned to a perfect cubic structure, and in the range from 30 to 70 nm, the stable phase at room temperature transformed gradu-

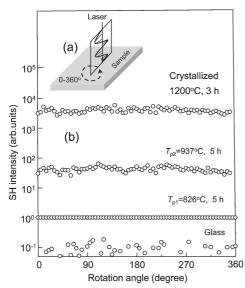


Fig. 5. Second harmonic intensity (b), i.e., the Maker fringe patterns, for the base glass and heat-treated samples as a function of rotation angle between linearly polarized incident lasers and samples in $40BaO-40TiO_2-15SiO_2-5Al_2O_3$ glass. (a): the relation between incident lasers and samples.

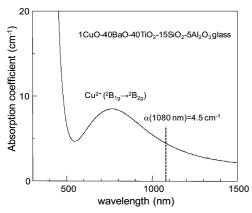


Fig. 6. Optical absorption spectrum at room temperature for 1CuO-40BaO-40TiO_-15SiO_-5Al_2O_3 glass.

ally to a tetragonal structure, i.e., the crystal structure in this region is pseudo-cubic. It is considered that the tetragonality in BaTiO₃ crystals present in the sample heat-treated at $T_{\rm p1}$ would be small, i.e., pseudo-cubic structure.

3.2 Patterning of BaTiO₃ crystal lines by laser irradiation

In the above experiments (Figs. 1 to 5), it was clarified that BaTiO₃ crystals are formed initially in the crystallization of 40BaO–40TiO₂–15SiO₂–5Al₂O₃ glass, and thus this glass would be a good candidate for the study of the laser pattering of BaTiO₃ crystals. The optical absorption spectrum at room temperature for 1CuO–40BaO–40TiO₂–15SiO₂–5Al₂O₃ glass (designated here as CuO-doped BTSA glass) is shown in **Fig. 6**. A broad and asymmetrical peak centered at ~800 nm is observed. It is well known that Cu²⁺ ions with the electronic configuration of 3d⁹ in glass give a strong and broad absorption peak at around 800 nm, and this peak is assigned to the ${}^2B_{1g} \rightarrow {}^2B_{2g}$ transition in Cu²⁺ ions in octahedral sites with strong tetragonal distortions.³⁴

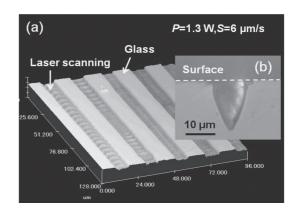


Fig. 7. CSLM photograph (a) for the sample obtained by cw Yb:YVO₄ laser irradiations ($\lambda = 1080$ nm) with a laser power of P = 1.3 W and a scanning speed of $S = 6 \,\mu$ m/s and POM photograph (b) for the cross-section of the line in 1CuO-40BaO-40TiO₂-15SiO₂-5Al₂O₃ glass.

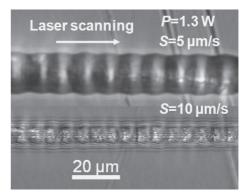


Fig. 8. POM photographs for the samples obtained by cw Yb:YVO₄ laser irradiations ($\lambda = 1080$ nm) with a laser power of P = 1.3 W and S = 5 and 10μ m/s in 1CuO-40BaO-40TiO₂-15SiO₂-5Al₂O₃ glass.

 α , is found to be $\alpha = 4.5 \text{ cm}^{-1}$ at $\lambda = 1080 \text{ nm}$. This absorption coefficient would be enough to induce structural modifications in BTSA glass by Yb:YVO₄ lasers,^{19)–21),35)} although the fraction of nonradiative relaxation process for Cu²⁺ ions in BTSA glass is unclear.

We tried to pattern BaTiO₃ crystal lines with different laser irradiation conditions, i.e., different laser powers (P) and scanning speeds (S). As an example, the data obtained by cw Yb: YVO₄ laser irradiations ($\lambda = 1080 \,\mathrm{nm}$) with a laser power of P = 1.3 W and $S = 6 \mu m/s$ are shown in Fig. 7. The CSLM photograph [(a) in Fig. 7] indicates that laser irradiations induce clear structural changes at the glass surface. It is also seen that the morphology of the laser-irradiated surface is not smooth. The POM photograph [(b) in Fig. 7] for the cross-section of the line indicates that the width (W) of lines at the surface is $W = 11 \,\mu\text{m}$ and the depth (D) is $D = 17 \,\mu\text{m}$. The shape of the cross-section shown in Fig. 7 is almost the same as that for ferroelectric LiNbO3 crystals patterned by laser irradiations in 1CuO-40Li2O-32Nb₂O₅-28SiO₂ glass.²⁷⁾ The region and shape of structural changes induced by laser irradiations would be related to the temperature profile (distribution) of laser-irradiated parts. The POM photographs for the samples obtained by laser irradiations with a laser power of P = 1.3 W and S = 5 and $10 \,\mu\text{m/s}$ are shown in Fig. 8. Structural changes are clearly induced along the laser scanning direction. The width of structure changed parts (lines) decreases with increasing laser scanning speed, i.e., $W = 20 \,\mu\text{m}$ for $S = 5 \,\mu\text{m/s}$ and $W = 5 \,\mu\text{m}$ for $S = 10 \,\mu\text{m/s}$, and

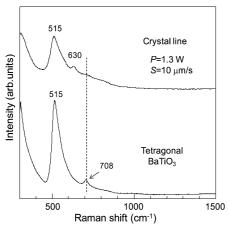


Fig. 9. Micro-Raman scattering spectrum at room temperature for the line patterned by lasers with P = 1.3 W and scanning $S = 10 \,\mu$ m/s in 1CuO-40BaO-40TiO₂-15SiO₂-5Al₂O₃ glass.

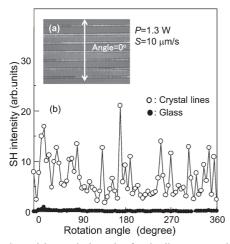


Fig. 10. Second harmonic intensity for the lines patterned by lasers with P = 1.3 W and scanning $S = 10 \,\mu\text{m/s}$ in 1CuO-40BaO-40TiO₂-15SiO₂-5Al₂O₃ glass.

a periodic morphology change is observed clearly along the laser scanning direction. Even in other laser irradiation conditions, no success for the patterning of lines with a smooth surface has been achieved at this moment (in our study).

The micro-Raman scattering spectrum at room temperature for the line patterned by lasers with P = 1.3 W and scanning S = 10µm/s is shown in Fig. 9. The peaks are observed at 305, 515, and $630 \,\mathrm{cm}^{-1}$, which are almost the same as those observed for the sample heat-treated at $T_{p1} = 826^{\circ}$ C for 5 h (Fig. 3). It should be pointed out that a broad peak is detected at $\sim 708 \,\mathrm{cm}^{-1}$, although its intensity is very small. The peaks observed at 305 and 515 cm⁻¹ demonstrate that at least BaTiO₃ crystals are formed in the laser-irradiated parts. The SH intensity for the lines patterned by lasers with P = 1.3 W and scanning $S = 10 \,\mu\text{m/s}$ is shown in Fig. 10 as a function of the rotation angle between linearly polarized incident lasers and lines. In this experiment, the angles of 0 and 180° mean that an electric field of incident light is perpendicular to the crystal line growth direction (i.e., laser scanning direction). SHGs are clearly observed for the lines, indicating that BaTiO₃ crystals being present in the laserirradiated parts are nonlinear optical crystals. Furthermore, the results shown in Figs. 9 and 10 suggest that the crystal structure of BaTiO₃ is not a perfect cubic, but has a small tetragonality.

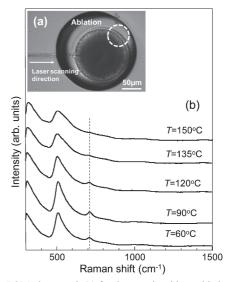


Fig. 11. POM photograph (a) for the sample with an ablation observed in the laser irradiations (P = 1.3 W and $S = 10 \,\mu\text{m/s}$) in 1CuO-40BaO-40TiO₂-15SiO₂-5Al₂O₃ glass and Raman scattering spectra (b) measured at different temperatures for the part marked by a white circle in the POM photograph.

We tried cw Yb:YVO₄ laser irradiations with different powers and scanning speeds for CuO-doped BTSA glass and also for other glasses such as $40BaO-30TiO_2-20SiO_2-10Al_2O_3$ and $35BaO-45TiO_2-15SiO_2-5Al_2O_3$ glasses. The results similar to the data shown in Figs. 9 and 10 are obtained. That is, the laser patterning of crystal lines consisting of tetragonal BaTiO₃ has not been confirmed.

In the experiments of laser irradiations, accidentally there have been cases that structure change does not follow along laser scanning direction, but stops at a certain position. Such phenomena would be due to the presence of small dust at the glass surface or large surface roughness formed during the polishing of the glass surface. The stop of line growth provides ablation because laser energy is accumulated instantaneously in a limited region. The POM photograph for such an ablation observed in the laser irradiations (P = 1.3 W and $S = 10 \mu m/s$) in CuOdoped BTSA glass is shown in Fig. 11(a). We checked the structure change in this ablation region from micro-Raman scattering spectrum measurements, and the data are shown in Fig. 11(b). As a result, it was found that the certain region, which is marked as a white circle in the POM photograph in Fig. 11(a), consists of tetragonal BaTiO₃ crystals, because Raman-active bands being typical for tetragonal BaTiO₃, i.e., 305, 515, and 708 cm^{-1} , are detected. In order to confirm more clearly the formation of tetragonal BaTiO₃ crystals, the temperature dependence of Raman scattering spectrum was measured, and the results are shown in Fig. 11(b). It is seen that the intensity of three peaks decreases with increasing temperature. In particular, the intensity of the peak at 708 cm⁻¹ is extremely small at 135°C and almost disappears at 150°C. It is well known that the phase transition temperature from tetragonal to cubic in BaTiO₃ crystals is around 135°C.^{30),33)} Consequently, the data shown in Fig. 11 demonstrate that tetragonal BaTiO₃ crystals are formed in the ablation region produced by laser irradiations. At this moment, information on the morphology and size of BaTiO₃ crystals formed by laser irradiations has not been obtained. Further studies such as high resolution transmission electron microscope observations would be necessary.

As shown in Table 1, various studies on the synthesis of BaTiO₃ crystals through the crystallization of glasses have been reported, and it has been recognized that the crystallization of tetragonal BaTiO₃ as an initial crystalline phase, i.e., the crystallization at low temperatures, is difficult. For instance, Kusumoto et al.⁸⁾ reported that BaTiO₃ crystals formed in 50BaO-20TiO₂-30B₂O₃ glass are cubic in the low temperature annealing (700°C), while apparently tetragonal in the high temperature annealing (800°C or above). Narazaki et al.12) examined the crystallization behavior of BaTiO₃ in 15BaO-15TiO₂-70TeO₂ glass⁷⁾ and BaTiO₃ crystals formed exhibit SHGs, although the structure is closer to cubic than tetragonal according to XRD measurements. The present study also proposes that the crystal growth rate of BaTiO₃ in glasses is not so high, providing nano-scaled crystals (i.e., below 100 nm) with a pseudo-cubic structure and that basically crystallization at high temperature is required in order to synthesize tetragonal BaTiO₃ crystals with a large size. The crystallization of glass proceeds through two steps of crystal nucleation and growth, and atomic rearrangements are taking place. In the case of the crystallization of BaTiO₃ in 40BaO-40TiO₂-15SiO₂-5Al₂O₃ glass, the diffusion of Ba²⁺, $\mathrm{Ti}^{4+},$ and O^{2-} ions or structural units such as TiO_n polyhedra is required. It is obvious that the glass network constructed by SiO₂ and Al₂O₃ prevents their long-range diffusions, consequently depressing the large crystal growth of BaTiO₃. So far, ferroelectric crystals with high orientations such as LiNbO₃, NaNbO₃ and β '-Gd₂(MoO₄)₃ have been patterned successfully by designing glass composition and laser irradiation conditions.^{19)–23),27),36),37)} For the laser patterning of homogeneous lines with tetragonal BaTiO₃ single crystals, further study, in particular on the glass system and composition, would be required.

4. Conclusion

The formation behavior and characterization of BaTiO₃ crystals in 40BaO–40TiO₂–15SiO₂–5Al₂O₃ glass were examined from X-ray diffraction analyses, Raman scattering spectrum, second harmonic generation (SHG), and polarization measurements. The structure of BaTiO₃ formed initially was suggested to be pseudo-cubic (small tetragonality), and perovskite-type ferroelectric BaTiO₃ crystals were formed in the heat-treatments at high temperatures of ~930°C. The lines consisting of BaTiO₃ crystals were patterned at the surface of CuO-doped glass by irradiations of continuous-wave Yb:YVO₄ lasers with a wavelength of 1080 nm. It was confirmed that BaTiO₃ being present in the laser-irradiated parts exhibits SHGs and, in particular, BaTiO₃ formed in the laser ablation region has a Curie temperature of ~135°C.

Acknowledgements This work was supported from the Grantin-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology, Japan (No. 23246114) and by Program for High Reliable Materials Design and Manufacturing in Nagaoka University of Technology.

References

- 1) A. Herczog, J. Am. Ceram. Soc., 47, 107-115 (1964).
- T. Kokubo, S. Sakka and M. Tashiro, J. Ceram. Soc. Japan, 74, 517-522 (1966).
- T. Kokubo, C. T. Kung and M. Tashiro, J. Ceram. Soc. Japan, 77, 529–533 (1966).
- 4) M. M. Layton and A. Herczog, *Glass Technol.*, 10, 50–53 (1969).

- N. F. Borrelli and M. M. Layton, J. Non-Cryst. Solids, 6, 197– 212 (1971).
- A. Bhargava, J. E. Shelby and R. L. Snyder, J. Non-Cryst. Solids, 102, 136–142 (1988).
- T. Komatsu, H. Tawarayama and K. Matusita, J. Ceram. Soc. Japan, 101, 48–52 (1993).
- 8) K. Kusumoto, T. Sekiya and Y. Murase, *Mater. Res. Bull.*, 28, 461–467 (1993).
- M. Todorovic, Lj. Radonjic and J. Dumic, *Key Eng. Mater.*, 132–136, 193–196 (1997).
- C. A. Randall, D. E. McCauley and D. P. Cann, *Ferroelectrics*, 206–207, 325–335 (1998).
- D. McCauley, R. E. Newnham and C. A. Randall, J. Am. Ceram. Soc., 81, 979–987 (1998).
- A. Narazaki, K. Tanaka and K. Hirao, J. Mater. Res., 14, 3640– 3646 (1999).
- 13) Y. Yonesaki, K. Miura, R. Araki, K. Fujita and K. Hirao, J. Non-Cryst. Solids, 351, 885–892 (2005).
- 14) E. K. Abdel-Khalek, E. A. Mohamed, S. M. Salem, F. M. Ebrahim and I. Kashif, *Mater. Chem. Phys.*, 133, 69–77 (2012).
- K. Kakegawa and J. Takahashi, J. Am. Ceram. Soc., 87, 1602– 1605 (2004).
- 16) P. V. Divya and V. Kumar, J. Am. Ceram. Soc., 90, 472–476 (2007).
- 17) E. P. Gorzkowski, M. J. Pan, B. A. Bender and C. C. M. Wu, J. Am. Ceram. Soc., 91, 1065–1069 (2008).
- 18) A. K. Yadav, C. Gautam and P. Singh, New J. Glass Ceram., 2, 126–131 (2012).
- 19) T. Komatsu, R. Ihara, T. Honma, Y. Benino, R. Sato, H. G. Kim and T. Fujiwara, J. Am. Ceram. Soc., 90, 699–705 (2007).
- 20) T. Komatsu and T. Honma, *IEEE J. Sel. Top. Quantum Electron.*, 14, 1289–1297 (2008).
- 21) T. Honma, J. Ceram. Soc. Japan, 118, 71-76 (2010).
- 22) T. Komatsu, F. Suzuki, K. Ogawa and T. Honma, *Transactions* on GIGAKU, 1, 01017 (2012).
- 23) T. Honma, Y. Benino, T. Fujiwara and T. Komatsu, *Appl. Phys. Lett.*, 88, 231105 (2006).
- T. Honma, K. Koshiba, Y. Benino and T. Komatsu, *Opt. Mater.*, 31, 315–319 (2008).
- 25) T. Honma, T. Komatsu, D. Zhao and H. Jain, *IOP Conf. Series: Mater. Sci. Eng.*, 1, 012006 (2009).
- 26) T. Honma and T. Komatsu, Opt. Express, 18, 8019–8024 (2010).
- T. Komatsu, K. Koshiba and T. Honma, J. Solid State Chem., 184, 411–418 (2011).
- T. Oikawa, T. Honma and T. Komatsu, *Cryst. Res. Technol.*, 43, 1253–1257 (2008).
- 29) L. Aleksandrov, T. Komatsu, R. Iordanova and Y. Dimitriev, *Opt. Mater.*, 33, 839–845 (2011).
- 30) B. D. Begg, K. S. Finnie and E. R. Vance, J. Am. Ceram. Soc., 79, 2666–2672 (1996).
- T. Noma, S. Wada, M. Yano and T. Suzuki, J. Appl. Phys., 80, 5223–5233 (1996).
- 32) Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu and M. Cao, *Mater. Chem. Phys.*, 109, 475–481 (2008).
- K. Suzuki and K. Kijima, J. Alloys Compd., 419, 234–242 (2006).
- 34) R. P. S. Chakradhar, B. Yasoda, J. L. Rao and N. O. Gopal, J. Non-Cryst. Solids, 352, 3864–3871 (2006).
- 35) K. Koshiba, T. Honma, Y. Benino and T. Komatsu, Appl. Phys., A Mater. Sci. Process., 89, 981–986 (2007).
- 36) Y. Tsukada, T. Honma and T. Komatsu, *Appl. Phys. Lett.*, 94, 059901 (2009).
- 37) K. Kioka, T. Honma, K. O-ishi, S. Leibstein, N. Da, L. Wondraczek and T. Komatsu, J. Non-Cryst. Solids, 358, 1523– 1529 (2012).