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First-principles calculations of the crystal structure and the elastic properties of tetragonal WN2 have been performed with the plane-wave
pseudopotential density functional theory method. The calculated structural parameters and elastic constants at zero pressure and temperature are
in excellent agreement with the available theoretical results. The dependence of the elastic constants Cij, the aggregate elastic moduli B, G and
the anisotropies on pressure have been investigated. WN2 is a brittle system below about 66GPa, whereas it becomes ductile under high
pressure. By the elastic stability criteria, it is predicted that tetragonal WN2 are not stable above 232.1GPa.
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1. Introduction

Superhard materials are of great importance in science and
technology, with applications in abrasives, coatings, cutting,
polishing tools, etc. Hardness, in general, is understood as the
extent which a given solid resists both elastic and plastic
deformations.1) Recently, platinum, iridium, and osmium
dinitrides were successfully synthesized under pressure and
temperature, which could be quenched and stabilized to
ambient conditions.2­4) The anomaly of these nitrides have
low compressibility, comparable to that of c-BN, which
suggests that they are potential superhard materials. Mean-
while, many theoretical investigations have been performed
to explore their structures, which is very important to
determine their physical properties. For PtN2, first-principles
calculations show that it should have a pyrite structure,5)

which agrees well with the experiment.3) The space groups
of OsN2 and IrN2

3,6) were also identified by theoretical
calculations as orthorhombic Pnnm and monoclinic P121/c1
structures, respectively.

However, to date, WN2 have not been synthesized in
crystalline form. Peter Kroll et al.7) proposed two structures
of baddeleyite and cotunnite types which are superior to the
fluorite-type structure. Two hexagonal P63/mmc and P-6m2
structures8,9) of WN2 with N­W­N “sandwiches” layers,
which are more stable than the cotunnite and baddeleyite
ones, are predicted by the first-principles calculations. The
elastic properties of two hexagonal structures are also
explored.9) The mechanical stability and elastic properties
of hexagonal structures of WN2 under pressure are inves-
tigated by density function theory.10) The structural properties
of tetragonal WN2 and ReN2

11) at zero pressure are studied
from first-principles calculations. They found that tetragonal
phase in WN2 should be stable above 175GPa. Although
they think that tetragonal WN2 may be difficult to be
synthesized, the calculated shear modulus of tetragonal WN2

is largest in the all synthesized 5d transition metal dinitrides.
For the partially covalent transition metal-based hard

materials, shear modulus has been considered as a very
important parameter, governing the indentation hardness. It is
therefore valuable to investigate the physical properties of
tetragonal WN2, which have important guiding significances
to the investigation of other similar compounds. Thus, in the
present work, we investigate the elastic properties and the
anisotropies of WN2 under pressure by using the plane-wave
pseudopotential density functional theory. In Section 2, we
have made a brief review of the theoretical method. The
results and some discussions are presented in Section 3.

2. Theory Method

First principle calculations, based on the density functional
theory (DFT), have shown a good accuracy in the study of
many physical and chemical properties for a wide scale of
materials. The CASTEP (Cambridge Serial Total Energy
Package) code12) was used for these calculations. The total
energy electronic structure calculations were performed using
the plane-wave pseudopotential technique within the density
functional theory. The non-local ultrasoft pseudopotential
(USPP) introduced by Vanderbilt13) was employed for all
ion­electron interactions. The structures were relaxed using
the Broyden, Fletcher, Goldfarb and Shannon (BFGS)
minimization method algorithm. To compare the performance
of different approximations of exchange­correlation inter-
action, we adopted both the local density approximation
(LDA-CAPZ) proposed by Vosko, Wilk and Nussair14) for
the approximations of exchange­correlation interactions. The
electronic wave functions are expanded in a plane wave basis
set with energy cut-off of 500 eV. Pseudo-atom calculations
are performed for N 2s2 2p3 and W 5s2 5p6 5d4 6s2. For the
Brillouin-zone k-point sampling, we use the Monkhorst­Pack
mesh with 10 © 10 © 8 k points. In geometrical relaxations,
the self-consistent convergence total energy of the system
converged to within 1.0 © 10¹7 eV/atom. The maximum
tolerance was less than 5 © 10¹6 eV/atom for the energy, and
less than 1.0 © 10¹2 eV/atom for the force. These parameters
are sufficient in leading to well converged total energy and
geometrical configurations.+Corresponding author, E-mail: lxfdjy@126.com

Materials Transactions, Vol. 53, No. 7 (2012) pp. 1247 to 1251
©2012 The Japan Institute of Metals

http://dx.doi.org/10.2320/matertrans.M2011373


To calculate the elastic constants under hydrostatic
pressures, we employ the strains to be non-volume con-
serving. The elastic constants Cijkl with respect to the finite
strain variables are then determined as:15­17)

cijkl ¼
@· ijðxÞ
@ekl

� �
X

ð1Þ

where sij and ekl are the applied stress and Eulerian strain
tensors, and X and x are the coordinates before and after the
deformation. For the isotropic stress, the elastic constants are
defined as:16­18)

cijkl ¼ Cijkl þ
P

2
ð2¤ij¤kl � ¤il¤jk � ¤ik¤jlÞ ð2Þ

Cijkl ¼
1

V ðxÞ
@2EðxÞ
@eij@ekl

� �
X

ð3Þ

where Cijkl is the second-order derivatives with respect to the
infinitesimal strain (Eulerian). The fourth-rank tensor C has
generally 21 independent components. However, this number
is greatly reduced when considering the symmetry of the
crystal. For tetragonal crystals WN2, there are six independ-
ent components of elastic constants, i.e. C11, C33, C44, C66,
C12 and C13.

According to the Voigt approximation19) there is a simple
relation between the isotropic bulk moduli BV and shear
moduli GV of a polycrystalline aggregate and the single-
crystal elastic constants Cij:

Bv ¼
1

9
½2ðC11 þ C12Þ þ C33 þ 4C13� ð4Þ

Gv ¼
1

30
ðM þ 3C11 � 3C12 þ 12C44 þ 6C66Þ ð5Þ

M ¼ ðC11 þ C12Þ þ 2C33 � 4C13 ð6Þ
Reuss20) derived a linear relation between the isotropic bulk
BR and shear moduli GR of a polycrystalline aggregate are
defined as follows:

BR ¼ C2=M ð7Þ
GR ¼ 15=ðð18BVÞ=C2 þ 6=ðC11 � C12Þ

þ 6=C44 þ 3=C66Þ ð8Þ
C2 ¼ ðC11 þ C12ÞC33 � 2C2

13 ð9Þ
Hill21) proved that the Voigt and Reuss equations represent
upper and lower limits of the true polycrystalline constants. It
showed that the polycrystalline moduli are the arithmetic
mean values of the Voigt and Reuss moduli and thus obtained
by

B ¼ ðBV þ BRÞ=2 G ¼ ðGV þGRÞ=2 ð10Þ

3. Results and Discussions

For the potential superhard material tetragonal WN2, the
total energy electronic structure calculations are performed in
a wide range of primitive cell volumes V, i.e., from 0.75V0 to
1.3V0, where V0 is the zero pressure equilibrium primitive cell
volume. No constraints are imposed on the c/a ratio, i.e.,
both lattice parameter a and c are optimized simultaneously.
It is found from our calculations that the most stable structure
of tetragonal WN2 occurs at the axial ratio c/a = 2.735,

corresponding to the equilibrium lattice constants: a =
2.664¡, c = 7.285¡. By fitting the obtained E­V data by
the Birch­Murnaghan equation of state,22) the bulk modulus
B0 and its pressure derivative B0A, bond length of N­N, W­N
are also listed in Table 1, together with the available
theoretical data.11) Generally, high hardness materials have
large bulk modulus. The bulk modulus B represents the
resistance to fracture. From Table 1, the calculated bulk
modulus B0 of tetragonal WN2 is 421.4GPa within LDA,
which is between those of the superhard material c-BN (369­
382GPa)23) and diamond (446GPa),24) and higher than that
of ReB2 of 354GPa within LDA (326GPa within GGA),25)

OsN2 of 417GPa within LDA (359GPa within GGA),26)

which indicates that tetragonal WN2 is also candidates of
ultra-incompressible materials.

The pressure dependence of the normalized lattice
parameters a/a0, c/c0 and the normalized cell volume V/V0

(where a0, c0 and V0 are the zero pressure equilibrium
structure parameters) are illustrated in Fig. 1. It is shown that,
below 10GPa, a small difference in fractional axis compres-
sion value appears; as pressure increases, the equilibrium
ratio a/a0 decreases more quickly than that of c/c0, indicating
that compression along c-axis is more difficult than that along
a-axis. Unfortunately, there are no experimental data to be
compared with our data.

The six elastic constants C11, C33, C44, C66, C12 and C13 of
tetragonal WN2 at 0GPa and 0K are listed in Table 2. There
is currently no experimental measurement of elastic constants
for our comparison. However, our results are well consistent
with those by Du et al.11) The mechanical stability of a
crystal implies that the strain energy must be positive.
Obviously, the elastic constants of WN2 crystal obey the
mechanical stability criteria of the tetragonal structure:

Table 1 The calculated equilibrium parameter a (¡), c (¡), bulk modulus
B0 (GPa) and pressure derivative bulk modulus B0

A, bond length of N­N,
W­N (¡) with available theoretical data.

a c c/a B0 B0
A N­N W­N

Present 2.664 7.285 2.735 421.4 4.51 1.404 2.191

LDA11) 2.67 7.28 429 4.49 1.39 2.20

GGA11) 2.71 7.38 378 4.58 1.41 2.23
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Fig. 1 Normalized parameters a/a0, c/c0, and V/V0 as a function of
pressure at T = 0.
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C11 � C12 > 0 C11 þ C33 � 2C13 > 0

Cii > 0 ði ¼ 1; 3; 4; 6Þ
2C11 þ C33 þ 2C12 þ 4C13 > 0 ð11Þ

which indicates tetragonal WN2 is stable at 0K and 0GPa.
The pressure dependence of elastic constants of WN2

(up to 240GPa) is summarized in Table 3. In the present
calculations, C11 > C33, which exhibited that the bonding
strength along the [100] and [010] direction is stronger than
that of the bonding along the [001] direction. C44 < C66, it
indicated that the [100] (010) shear is more difficult than the
[100] (001) shear. The [ijk] and (ijk) denote symmetry axis
and plane, respectively. It is also clearly found that C11, C33,
C66, C12 and C13 are susceptible to pressure, while, and C44

varies little under the effect of pressure. Moreover, C44 firstly
increases and subsequently decreases with pressure.

High bulk modulus is not enough to describe the
mechanical strength of a material. Shear modulus is a
significantly better qualitative predictor of hardness than the
bulk modulus. Moreover, the material is often used as
polycrystalline aggregates, and therefore it is useful to
estimate the corresponding parameters of the polycrystalline
species. Therefore, the bulk modulus B and shear modulus G
are calculated by the Voigt­Reuss­Hill approximation. The
relevant elastic tensors BV, BR, B, GV, GR and G under
pressures are also listed in Table 3. The obtained bulk and
shear modulus (421.3 and 301.7GPa respectively) are in
good agreement with that in Ref. 11). Moreover, they are
much higher than that in hexagonal WN2.10) Therefore,
tetragonal WN2 possess superior elastic property to hexag-
onal structures, which were considered as the most stable
structure in WN2.9) What most interested us is that the
computed shear moduli of tetragonal WN2 exceed those of all
transition metal dinitrides synthesized. High shear modulus is
helpful to their mechanical strength and also makes them
candidates of superhard materials.

The ratio of bulk to shear modulus B/G is proposed as an
indication of ductile and brittle character. The bulk modulus
B is a factor that indicates the resistance to volume change

by applied pressure, while the shear modulus G represents
the resistance to plastic deformation. A high B/G ratio is
associated with ductility, whereas a low value corresponds to
brittle nature. If B/G > 1.75, the material behaves in a ductile
manner; otherwise, the material behaves in a brittle manner.
In addition, the ratio B/G reflects the hardness of a material.
The smaller the ratio B/G is, the bigger the hardness of the
material. The relation of B/G and pressure in WN2 is
exhibited in Fig. 2(a). When pressure increases from 0 to
240GPa, the value of B/G changes from 1.396 to 2.801. It
indicated that tetragonal WN2 is a potential superhard
material. Meanwhile, it is found that the ration of B/G is
less than 1.75 below 66.2GPa. The results indicated that the
tetragonal WN2 is prone to brittleness at low pressure, and is
strongly prone to ductility at high pressure.

As is known, for tetragonal crystals the mechanical
stability under isotropic pressure can be judged from the
following criterion:27,28)

~C11 � ~C12 > 0; ~C11 þ ~C33 � 2 ~C13 > 0;

~Cii > 0; 2 ~C11 þ ~C33 þ 2 ~C12 þ 4 ~C13 > 0 ð12Þ
in which ~C¡¡ ¼ C¡¡ � P (¡ = 1, 3, 4, 6), ~C12 ¼ C12 þ P,
~C13 ¼ C13 þ P. By fitting ~C44 data to second-order poly-
nomials, we have the following relations:

~C44 ¼ ¡þ ¢P � £P2: ð13Þ
Figure 2(b) shows ~C44 versus pressures for WN2. When

the pressure ~C44 > 0 is no longer fulfilled, indicating that
tetragonal structure in WN2 is not mechanical stable above
pressure about 232.1GPa. The result consists with that
reported by Li et al.11)

Table 2 The elastic constants Cij (GPa) for the tetragonal WN2 at zero
temperature and zero pressure.

C11 C33 C44 C66 C12 C13

Present 956.7 954.7 222.2 315.1 117.0 172.7

LDA11) 955 973 231 324 136 176

GGA11) 853 861 203 276 122 147

Table 3 Zero temperature elastic constants Cij (GPa) of tetragonal WN2 under pressure P (GPa).

P C11 C33 C44 C66 C12 C13 BV BR B GV GR G

0 956.7 954.7 222.2 315.1 117.0 172.7 421.5 421.2 421.3 312.3 291.1 301.7

40 1218.7 1205.8 260.9 436.2 230.2 303.8 591.0 590.6 590.8 378.6 350.8 364.7

80 1450.2 1427.4 279.4 546.6 337.4 430.2 747.0 746.6 746.8 429.7 389.4 409.5

120 1663.2 1629.8 281.8 649.3 441.4 557.1 896.3 895.8 896.1 469.3 410.1 439.7

160 1865.9 1823.8 271.8 745.3 549.4 671.7 1037.9 1037.5 1037.7 501.9 416.7 459.3

200 2056.7 2010.9 254.6 835.9 657.0 787.7 1176.6 1176.2 1176.4 528.5 411.4 469.9

240 2240.4 2188.6 225.7 923.2 767.0 900.3 1311.6 1311.3 1311.4 548.4 387.9 468.2
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Fig. 2 (a) B/G (b) C44 ¹ P versus pressures.
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It is well known that microcracks are induced in alloys
owing to the anisotropy of the coefficient of thermal
expansion as well as elastic anisotropy. Hence it is important
to calculate elastic anisotropy in superhard materials in order
to understand these properties and hopefully find mechanisms
which will improve their hardness and durability. A proper
description of anisotropic behavior has an important
implication in engineering science as well as in crystal
physics. The shear anisotropic factors provide a measure of
the degree of anisotropy in bonding between atoms in
different planes. The shear anisotropic factors along {100}
and {001} shear planes is defined as follows:29)

A1 ¼ Af100g ¼
4C44

C11 þ C33 � 2C13

ð14Þ

A2 ¼ Af001g ¼
2C66

C11 � C12

ð15Þ

In the case of an isotropic crystal, the factors A1, A2 must be
equal to one, while any value smaller or greater than one is a
measure of the degree of elastic anisotropy possessed by the
crystal. The anisotropic factors A1, A2 with pressure are
plotted in Fig. 3. There is no experimental data to verify our
results under pressure. When the applied pressure increases
from 0 to 240GPa, the anisotropic factors A1, A2 change by
39.5 and 66.9%, respectively, i.e., A1 decreases quickly and
A2 increases sharply with increasing pressure, which is due to
the fact that the elastic constants C11, C33, C66, C12 and C13

increase by pressure. However, C44 slightly increases and
decreases with pressure, which leads to the shear elastic
anisotropy along {100} decreases under pressure. For this
model, the elastic anisotropy is independent of the symmetry
of the crystal only. In Fig. 1, we found that the ratio c/a
changes with different pressure, that is, the structure is always
varying with the applied pressure. Therefore, the elastic
anisotropy may be different with pressure. These behaviors
may be corresponding to the bonding situations in tetragonal
WN2, which is characterized as a strong cohesive bonding
between pure N layers and a weaker bonding in the W and N
layer.

In addition, the percentage elastic anisotropy for bulk
modulus AB and shear modulus AG in polycrystalline
materials can also be used as follows:

AB ¼ BV � BR

BV þ BR

; AG ¼ GV �GR

GV þGR

ð16Þ

where B and G denote the bulk and shear modulus, and the
subscripts V and R represent the Voigt and Reuss approx-
imations. The percentage of bulk and shear anisotropies, i.e.,
AB and AG are also obtained and presented in Fig. 3. It shows
that tetragonal WN2 is largely isotropic in bulk and slightly
anisotropic in shear at pressures or not.

4. Conclusions

The elastic properties and anisotropies of tetragonal WN2

under high pressure are investigated by means of the ab initio
plane wave pseudopotential density functional theory within
the local density approximation (LDA). The equilibrium
lattice parameters and volume is obtained. The dependence of
the elastic constants and the aggregate elastic moduli (B, G)
of tetragonal WN2 under high pressure from 0 to 240GPa
are also presented. But as far as we know, there are no
experimental data available for these quantities. Thanks to
availability of the complete elastic tensor it is possible to
obtain anisotropy factors for the crystal. The systematic
increases of the anisotropy with pressure are observed except
symmetry plane {100}. From our analysis, we also find that
WN2 is a brittle system below about 66GPa, whereas it
becomes ductile at higher pressures. Moreover, from our
elastic constants of WN2 under pressure, we have found that
WN2 becomes more ductile with the pressure increasing. By
the elastic stability criteria, it is predicted that tetragonal WN2

are not stable above 232.1GPa. The present theoretical
results should be used to stimulate future experimental and
theoretical work.
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