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When one attempts to modulate and control the characteristics of composite materials, the mathematical threshold of the percolation
transition dictates the modulation limit. Using a series of computer simulations, we have been investigating the dependence of the percolation
threshold on particle size distributions. However, one of the other factors that can deeply affect percolation behavior, the design of lattice, is
always fixed to simple square or cubic lattices. This report presents the first calculation of a percolation threshold in a 2D triangular lattice with
binary size distributions of conductor particles. Although a small quantitative difference was found, the results qualitatively matched to the
results already reported for 2D square lattices, thus confirming our previous finding: the introduction of large conductor particles increases the
percolation threshold in 2D. [doi:10.2320/matertrans.M2012029]
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1. Introduction

The percolation behavior1) of composite materials has been
explained accurately by a simple theoretical model, such as
randomly occupied sites (or bonds) on a lattice in various
lattice types. The sudden appearance of a large connected
cluster at a certain threshold of the occupancy ratio, denoted
as p, of lattice sites clearly coincides with the transition in
macroscopic characteristics of the materials. This success, in
turn, means that the limit of composite materials imposed by
the percolation transition is a rather mathematical one, rooted
in the randomness of material structures and difficult to
overcome within the conventional assumptions used in
material sciences. The percolation threshold, denoted as pc,
can be a strict limit on the mixture ratio of constituent
materials, because sometimes, ensuring the connectedness
of one of several constituent materials is fundamental to
ensuring the desired performance of the material, such as
electronic conductance.

It would be possible to systematically move the limit by
stepping outside of the simple percolation model, where the
configuration of the particles in a composite material is not
completely randomized but to some degree correlated. To
realize such a limited-ordered configuration of composite
materials in reality, researchers have considered the use of
particles modulated in their size distributions,2­4) with shape
differences,5,6) and with controlled affinity between par-
ticles.6) The core­shell particle designs7­9) and direct control
of the particle deposition process (if possible), are also
promising approaches to realize correlated nanostructures and
controlled percolation. As for cases of continuum percolation
models, a simulation study showed10) that even simpler size
distributions (Gaussian, uniform, and log-normal distribu-
tions of particles, regardless of their conductivity) shows a
clearly nontrivial effect. Even in simpler models,11,12) for
example, conductor sites arranged in length X bars aligned
vertically or horizontally in square lattice,13) can exhibit quite
complex effects and there actually is an optimum value of X,
beyond which the effect on pc is inversed.

In particular, we have been investigating14,15) the effects of
the most basic type of correlations realizable simply by using
particles with differentiated sizes on the percolation behavior
of the system. Although this type of correlation seems to be
quite useful for increasing connectedness among particles,
it is important to investigate the effects of particle size
differentiations in combination with other factors that can
affect percolation characteristics such as the type of lattice
used in the simulation.

To this end, here we extend the same basic binary size
distribution model we investigated before on the square
lattice model to a 2D triangular lattice model. This is
interesting because, as we pointed out in one of our previous
papers, the direct cause of the shift in the pc can be the
change in the effective coordination number of the lattice
(or the number of the neighboring sites).8) Since the
triangular lattice has a clearly different and increased
coordination number (6) than the simple square lattice (4),
the system may exhibit a different reaction to the same type
of correlation. Conveniently, the pc of site-percolation on a
2D triangular lattice (0.516­18)) is rather close to that of the
2D square lattice (0.5919)), while there is a drastic difference
between these lattices in the pc of the bond percolation (0.5
and 0.35,20) respectively). One of the minor and additional
advantages of using a triangular lattice is that it can be a little
closer to reality: relatively large particles on a triangular
lattice are modeled by hexagons of various sizes; this is
closer to a typical experimental situation involving spherical
particles. Finally, in this report we introduce a further
simplification: we confine ourselves to cases with large
conductor particles.

2. Methods

In this calculation, we basically generate and evaluate a
large number of ways to place numerous hexagons, some
of which are bigger than normal and occupy X > 1 sites,
onto a triangular lattice. Random particle configurations
are generated as follows. First, non-overlapping hexagons
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of the required number and size are randomly placed on
the triangular lattice by means of a simple trial-and-error
algorithm to decide the positions of large conductor particles.
Then lattice sites not covered by these large particles are
randomly classified into the conductor sites and insulator
sites with a given probability. This simple scheme apparently
samples all possible configurations with a given combination
of the number and type of particles. About 20000 different
random particle configurations are generated and analyzed
for each condition by means of a standard cluster analysis
method. For each condition introduced below, lattice sizes
L = 32, 64, 128, 256 and 512, are simulated. Details on
the lattice and particle design (as well as detailed defini-
tions of X and L) are given in Fig. 1. Although this
percolation problem in a triangular lattice is algorithmically
equivalent to that in a square lattice, we developed a new
simulation code in C++, mainly because the excluded
volume effect between hexagons is easier to program in
C++.

In our previous works,14,15) the number of enlarged
particles is decided in such a way that 50% of the conductor
sites are located in the enlarged particles. Here, this
restriction is removed, and allowing us to calculate 9
different settings regarding the fractions of large conductor
particles (see Fig. 1). In these conditions, 0 to 80% of
conductor sites belong to large conductor particles. The
volume fraction of the large particle over all conducting
particles (not over all particles) is denoted as q. Therefore,
q = 0.0­0.8, and when q = 0.5, the particle number ratios
between enlarged conductor, unit size conductor, and unit
size insulator are p/14 : p/2 : 1 ¹ p. Whereas the sampling
interval of q is 0.1, the typical interval used for p is 0.01.
Note that all lattice sites are defined as either insulator or
conductor sites (“void” is not considered, because in this
simulation, a void is equivalent to insulator sites in all
respects).

The output of these calculations is the mean finite cluster
size, S(L, p), defined as a summation taken for all clusters
except the largest one,

SðL; pÞ ¼
X

s

s2nsðpÞ; ð1Þ

where ns(p) is the average number of clusters with size s.
Roughly speaking, the peak of the finite cluster size coincides
with the critical point.

However, due to the effect of the finite size of the
simulation lattice, the observed critical densities depend on
lattice size, therefore does not indicate the true critical
density. The critical densities for infinite lattices are estimated
by the standard method introduced in the following,1) called
finite size scaling (FSS). The correlation length of the system,
which is basically the characteristic distance between two
sites belonging to the same cluster of percolating sites, ²,
diverges near the critical point as

² / jp� pcj�¯: ð2Þ
A scaling function for cluster size, f(z), is introduced,

fðzÞ ¼ L�£=¯SðL; pÞ: ð3Þ
In these equations, £ and ¯ are values called critical
exponents21) that are, along with other critical exponents,
describes how the corresponding physical values of the
systems diverge at their critical point. The values of these
exponents are known to be unchanged over very different
systems if the dimensionalities of the systems are unchanged.
Here, it is assumed that, at the critical point, this function is
dependent only on the ratio of the current system size to the
correlation length of the system. Therefore, it is natural to
define z = L/² = L/«p ¹ pc«¹¯. Naturally, the value of z is
constant at any critical point observed in systems having
any L. Because of this constant nature of z, the critical
points exhibited by S(L, p) in various L are denoted as pc(L),
as in

jpcðLÞ � pcj / L�1=¯: ð4Þ
This formula tells that there is a value of ¹1/¯ that can

make the L¹1/¯ versus pc(L) plot into a linear line, and the
point where the line intersects the y-axis (y = 0, that is,
L ¼ ¨) gives the true critical density in the ideally large
system.

3. Results and Discussion

In Fig. 2, the location of (system size dependent) critical
density is indicated by the peak of the plot, which shows the
mean size of finite connected clusters in the lattice (y-axis)
as a function of the density of conducting sites (x-axis).
Each condition shows three peaks with different heights and
grades, corresponding to different lattice sizes (L = 512
shows the highest and steepest plots). The basic correctness
of the simulation is demonstrated by the location of the peak
for q = 0, which coincides with the reported transition point
in the conventional site percolation model (0.5)20) in a 2D
triangular lattice. The other peaks clearly show that, also in
the case of a 2D triangular lattice, the enlarged conductor
particle shows a weak but clear effect of increasing pc. This
is confirmed by the value of “true” pc estimated by a
successful FSS analysis with ¯ = 4/3 (the same as the value
for normal 2D percolation1)) also shown in Fig. 3. When

Fig. 1 In this work, a unit size insulator particle, a unit size conductor
particle, and a conductor particles with an increased size shown in this
figure are considered on a triangular lattice.
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half of the conductor sites are in the enlarged particles,
an approximately 8% (0.5 ¼ 0.540) increase in pc was
observed. Interestingly, this is a much bigger change than
that observed in the corresponding situation in a previous
report on a square lattice.5,22) The strongest effect on pc
is observed for q = 0.8, where pc is increased by 12.8%
(0.5 ¼ 0.564).

4. Discussion

Although the values of the critical exponents are strongly
bound to the dimensionality of the space, the lattice strongly
affects the detailed behavior of percolation phenomena.
This point should not be denied when an application of
computer simulation to real materials is considered. In that
sense, the result introduced above is important because it
proves that the increase in pc observed in the case of a 2D
simple lattice is not an artifact but clearly a direct result of the
poly-dispersity of the conductor particles in the system. It is
also important to notice that the hexagonal particle in a
triangular lattice is more realistic than a cubic particle in a
simple cubic lattice. Real particles tend to be spherical, and
spherical particles tend to take hexagonal configurations
when they are closely packed. Note that this is more true
in cases of enlarged particles; unlike hexagonal enlarged
particles, square enlarged particles do not have to be packed
in hexagonal configurations.

Our previous results have shown that the percolation
behavior with particle size distributions may be very
different in 3D cases. But the superiority of the hexagonal
particle or lattice in modeling realistic particles is generally
not changed in 3D cases, although 2D hexagonal packing
will be replaced by 3D hexagonal close packing (hcp).
Considering these points, we must extend the result of the
current paper into 3D cases, presumably using hcp lattices.
A continuous model with impermeable spherical particles
(and, preferably, with continuous diameter distributions)
will be a very interesting subject to investigate by means of
large-scale computer simulations. The main difficulty in
realizing this is the increased complexity of packing;
realizing dense random packing in computer simulations is
a much more difficult and complex problem than is generally
understood.23)

5. Conclusion

In this report, a series of the computer simulations on
site percolation on 2D triangular lattice with particle size
distribution is presented. The type of particle size distribu-
tion is limited to a binary distribution of conducting
particles. The results of the simulations are in accordance
with our previous simulation work about similar conditions
on 2D square lattice, although in triangular lattice, the
observed effect of the particle size distribution is stronger: a
12.8% increase of critical density is observed when 80% of
conducting sites are belong to bigger particles. Considering
that triangular lattices are more suitable than square lattices
to model the conducting films in reality, the observed
enhancement in the change of critical density is quite
interesting.
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Fig. 2 The mean size of finite connected clusters as a function of the
volume fraction of conducting sites on a 2D lattice, plotted for L = 128,
256 and 512. The leftward shift of the plots clearly indicates the pc-
increasing effect of enlarged insulator particles.
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Fig. 3 Finite-size scaling analysis of pc. The values of pc extrapolated to
the infinite system for various values of q are tabulated in the legend.
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