Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Compilation and Characterization of a Novel WNK Family of Protein Kinases in Arabiodpsis thaliana with Reference to Circadian Rhythms
Norihito NAKAMICHIMasaya MURAKAMI-KOJIMAEriko SATOYasuko KISHITakafumi YAMASHINOTakeshi MIZUNO
Author information
JOURNAL FREE ACCESS

2002 Volume 66 Issue 11 Pages 2429-2436

Details
Abstract

  The complete genome sequence of Arabidopsis thaliana revealed that this higher plant has a tremendous number of protein kinases. We recently isolated a novel type of protein kinase, named AtWNK1, which shows an in vitro ability to phosphorylate the APRR3 member of the APRR1/TOC1 quintet that has been implicated in a mechanism underlying circadian rhythms in Arabidopsis. We here address two issues, one general and one specific, as to this novel protein kinase. We first asked the general question of how many WNK family members are present in this higher plant, then whether or not other members are also relevant to circadian rhythms. The results of our analyses showed that Arabidopsis has at least 9 members of the WNK1 family of protein kinases (designated here as WNK1 to WNK9), the structural design of which is clearly distinct from those of other known protein kinases, such as receptor-like kinases and mitogen-activated protein kinases. They were examined with special reference to the circadian-related APRR1/TOC1 quintet. It was found that not only the transcription of the WNK1 gene, but also those of three other members (WNK2, WNK4, and WNK6) are under the control of circadian rhythms. These results suggested that certain members of the WNK family of protein kinases might play roles in a mechanism that generates circadian rhythms in Arabidopsis.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2002 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top