Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Microbiology & Fermentation Technology Regular Papers
Degradation Pathways of Trichloroethylene and 1,1,1-Trichloroethane by Mycobacterium sp. TA27
Akiko HASHIMOTOKazuhiro IWASAKINaou NAKASUGIMutsuyasu NAKAJIMAOsami YAGI
Author information
JOURNAL FREE ACCESS

2002 Volume 66 Issue 2 Pages 385-390

Details
Abstract

  We analyzed the kinetics and metabolic pathways of trichloroethylene and 1,1,1-trichloroethane degradation by the ethane-utilizing Mycobacterium sp. TA27. The apparent Vmax and Km of trichloroethylene were 9.8 nmol min−1 mg of cells−1 and 61.9 μM, respectively. The apparent Vmax and Km of 1,1,1-trichloroethane were 0.11 nmol min−1 mg of cells−1 and 3.1 μM, respectively. 2,2,2-trichloroethanol, trichloroacetic acid, chloral, and dichloroacetic acid were detected as metabolites of trichloroethylene. 2,2,2-trichloroethanol, trichloroacetic acid, and dichloroacetic acid were also detected as metabolites of 1,1,1-trichloroethane. The amounts of 2,2,2-trichloroethanol, trichloroacetic acid, chloral, and dichloroacetic acid derived from the degradation of 3.60 μmol trichloroethylene were 0.16 μmol (4.4%), 0.11 μmol (3.1%), 0.02 μmol (0.6%), and 0.02 μmol (0.6%), respectively. The amounts of 2,2,2-trichloroethanol, trichloroacetic acid and dichloroacetic acid derived from the degradation of 1.73 μmol 1,1,1-trichloroethane were 1.48 μmol (85.5%), 0.22 μmol (12.7%), and 0.02 μmol (1.2%), respectively. More than 90% of theoretical total chloride was released in trichloroethylene degradation. Chloral and 2,2,2-trichloroethanol were transformed into each other, and were finally converted to trichloroacetic acid, and dichloroacetic acid. Trichloroacetic acid and dichloroacetic acid were not degraded by strain TA27.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2002 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top