Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Enhanced Expression of Membrane-Associated Sialidase Neu3 Decreases GD3 and Increases GM3 on the Surface of Jurkat Cells during Etoposide-Induced Apoptosis
Yutaro AzumaHirotaka SatoKoji HigaiKojiro Matsumoto
Author information
JOURNAL FREE ACCESS

2007 Volume 30 Issue 9 Pages 1680-1684

Details
Abstract

We previously reported that, in Jurkat human T cells, the topoisomerase II inhibitor etoposide enhances sialidase activity and reduces cell surface sialic acid levels at an early stage of apoptosis and that the decreases in sialic acid are suppressed by the sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid [Azuma Y., et al., Glycoconj. J., 17, 301—306 (2000)]. In the current studies, we treated Jurkat cells with etoposide and examined the changes in the cell surface levels of gangliosides GM1, GM2, GM3, GD1a, and GD3 at physiological pH using anti-ganglioside antibodies. We also examined the sialidase activity on the cell surface using 4-methylumbelliferyl N-acetylneuraminic acid and measured the mRNA expression of the plasma membrane-associated sialidase Neu3 and the lysozomal Neu1 using real-time PCR. We found an increase in GM3 and a decrease in GD3 during the early stage (4 h) of etoposide-induced apoptosis that preceded the increase in cell surface exposure of phosphatidylserine (4 to 6 h). The caspase 3 inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde significantly suppressed changes in GM3 and GD3 and blocked the enhanced cell surface sialidase activity. Furthermore, etoposide caused a gradual up-regulation of Neu3 mRNA expression but not Neu1 mRNA expression. Enhanced Neu3 mRNA expression was suppressed in the presence of caspase 3 inhibitor. These results indicate that Neu3 is up-regulated in Jurkat cells undergoing etoposide-induced apoptosis through intracellular signaling events downstream of caspase 3 activation and that enhanced Neu3 activity is closely related to the changes of cell surface ganglioside composition.

Content from these authors
© 2007 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top