Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Gastroprotective Mechanisms of Centipedic Acid, a Natural Diterpene from Egletes viscosa LESS.
Marjorie Moreira GuedesAna Carla da Silva CarvalhoAlana Fontales LimaSilveria Regina de Sousa LiraSamia Sousa de QueirozEdilberto Rocha SilveiraFlávia Almeida SantosVietla Satyanarayana Rao
Author information
JOURNAL FREE ACCESS

2008 Volume 31 Issue 7 Pages 1351-1355

Details
Abstract

This study was aimed to clarify the mechanisms of gastroprotection by centipedic acid (CPA), a natural diterpene from Egletes viscosa LESS. (Asteraceae) using ethanol-induced gastric mucosal damage in mice and gastric secretion in 4-h pylorus-ligated rats as model systems. In mice, intragastrically administered CPA (25, 50, 100 mg/kg) greatly reduced the mucosal lesions induced by 96% ethanol (0.2 ml, p.o.) by 18, 53, and 79%, respectively, whereas N-acetylcysteine (NAC, 300 mg/kg, i.p.), the reference compound produced a 50% inhibition. In 4-h pylorus-ligated rats, CPA (50 mg/kg) applied intraduodenally decreased both gastric secretory volume and total acidity. Similar to NAC, the plant diterpene effectively prevented the ethanol associated decrease in non-proteic sulfhydryls (NP-SH) and the elevated thiobarbituric acid-reactive substances (TBARS) in gastric tissue, suggesting that these compounds exert an antioxidant effect. Pretreatment of mice with indomethacin, the cyclooxygenase inhibitor but not with capsazepine, the transient receptor potential vanilloid-1 (TRPV1)-receptor antagonist greatly suppressed the gastroprotective effect of CPA. Furthermore, CPA gastroprotection was significantly attenuated in mice pretreated with L-NAME or glibenclamide the respective inhibitors of nitric oxide synthase and K+ATP channel activation. These data suggest that CPA affords gastroprotection by different and complementary mechanisms, which include a sparing effect on NP-SH reserve, and roles for endogenous prostaglandins, nitric oxide, and TRPV1-receptor and K+ATP channel activation.

Content from these authors
© 2008 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top