Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Function and Expression of ATP-Binding Cassette Transporters in Cultured Human Y79 Retinoblastoma Cells
Yuka IshikawaJunya NagaiYumi OkadaKoya SatoRyoko YumotoMikihisa Takano
Author information
JOURNAL FREE ACCESS

2010 Volume 33 Issue 3 Pages 504-511

Details
Abstract

The aim of this study was to reveal the expression and function of P-glycoprotein and multidrug resistance-associated proteins (MRP), members of the ATP-binding cassette (ABC) superfamily of drug transporters, in cultured human Y79 retinoblastoma cells. ABC transporter mRNA expression was evaluated by conventional reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR analyses. Cellular accumulation of rhodamine 123 (P-glycoprotein substrate), calcein (MRP substrate), and doxorubicin (P-glycoprotein/MRP substrate) was analyzed by fluorometry. Conventional RT-PCR analysis showed the expression of multidrug resistance 1 (MDR1), MRP1, MRP2 and lung resistance-related protein (LRP) mRNAs. Real-time RT-PCR analysis revealed that the expression levels of the MDR1 and MRP2 genes in Y79 cells were much lower than those in human intestinal cell line Caco-2, while the expression level of MRP1 was higher than that in Caco-2 cells. The accumulation of rhodamine 123 was not enhanced by verapamil or reversin 205, inhibitors of P-glycoprotein, indicating no function of P-glycoprotein in Y79 cells. The accumulation of calcein was significantly increased by various MRP inhibitors including probenecid, indicating that MRP functions in Y79 cells. The accumulation of doxorubicin was increased in the presence of metabolic inhibitors (10 mM 2-deoxyglucose and 5 mM sodium azide). However, most MRP inhibitors such as probenecid and indomethacin did not affect doxorubicin accumulation, while cyclosporin A and taclorimus significantly increased doxorubicin accumulation. These results suggest that MRP, but not P-glycoprotein, functions in Y79 cells, and that the efflux of doxorubicin from Y79 cells may be due to an ATP-dependent transporter, which has not been identified yet.

Content from these authors
© 2010 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top