International Journal of Fluid Machinery and Systems
Online ISSN : 1882-9554
ISSN-L : 1882-9554
Original Papers
Computational Study of Magnetically Suspended Centrifugal Blood Pump (The First Report: Main Flow and Gap Flow)
Yoshifumi OgamiDaisuke MatsuokaMasaaki Horie
Author information
JOURNAL FREE ACCESS

2010 Volume 3 Issue 2 Pages 102-112

Details
Abstract

Artificial heart pumps have attracted the attention of researchers around the world as an alternative to the organ used in cardiac transplantation. Conventional centrifugal pumps are no longer considered suitable for long-term application because of the possibility of occurrence of blood leakage and thrombus formation around the shaft seal. To overcome this problem posed by the shaft seal in conventional centrifugal pumps, the magnetically suspended centrifugal pump has been developed; this is a sealless rotor pump, which can provide contact-free rotation of the impeller without leading to material wear. In Europe, clinical trials of this pump have been successfully performed, and these pumps are commercially available. One of the aims of our study is to numerically examine the internal flow and the effect of leakage flow through the gap between the impeller and the pump casing on the performance of the pump. The results show that the pressure head increases compared with the pump without a gap for all flow rates because of the leakage of the fluid through the gap. It was observed that the leakage flow rate in the pump is sufficiently large; further, no stagnant fluid or dead flow regions were observed in the pump. Therefore, the present pump can efficiently enhance the washout effect.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2010 Turbomachinery Society of Japan, Korean Fluid Machinery Association, Chinese Society of Engineering Thermophysics, IAHR
Previous article Next article
feedback
Top