Journal of the Ceramic Society of Japan
Online ISSN : 1882-1022
Print ISSN : 0914-5400
ISSN-L : 0914-5400
Papers
Toughening Mechanisms in SiC–TiC Composites
Young-Il LEEYoung-Wook KIM
Author information
JOURNAL FREE ACCESS

2004 Volume 112 Issue 1301 Pages 18-21

Details
Abstract

Three different microstructures in SiC–TiC composites containing Al2O3 and Y2O3 as sintering additives were prepared by hot-pressing and subsequent annealing. To investigate the dominant toughening mechanism operating in toughened SiC–TiC composites, the microstructure-crack interaction was examined by image analysis. Crack deflection by elongated α-SiC grains was most frequently observed (61% of the observed sites) as the dominant toughening mechanism in the SiC–TiC composites. Crack deflection was generally observed for elongated α-SiC grains with aspect ratio (AR)>2.5 and grain thickness (t)<2.5 μm. Crack bridging (21% of the observed sites) was also observed as one of the operating toughening mechanisms. The rest (18%) of the observed grains fractured transgranularly. The crack bridging mechanism was mostly related to thinner grains with thickness t<2 μm, while transgranularly fractured elongated-grains were mostly related to thicker grains with thickness 2<t<4 μm.

Content from these authors
© 2004 The Ceramic Society of Japan
Previous article Next article
feedback
Top