Aqueous Processing, Hot-Pressing and Mechanical Properties of Silicon Carbide with Al₂O₃ and Y₂O₃ Nobuhiro HIDAKA, Yoshihiro HIRATA, Xu Hong WANG and Shuhei TABATA Department of Advanced Nanostructured Materials Science and Technology, Graduate School of Science and Engineering, Kagoshima University, 1-21-40, Korimoto, Kagoshima-shi 890-0065 ## アルミナとイットリアを添加した炭化ケイ素の水系プロセッシング、加圧焼結及び力学特性 日高宣浩・平田好洋・王 旭紅・田畑周平 鹿児島大学大学院理工学研究科ナノ構造先端材料工学専攻,890-0065 鹿児島市郡元 1-21-40 Submicrometer-sized α -SiC powder was mixed in an aqueous solution at pH 5.0 with the following Al₂O₃ (1–2 vol% against SiC)-Y₂O₃ (0.94–1.6 vol%) sintering additives: sample A-Al₂O₃ powder plus Y₂O₃ powder, sample B-Al₂O₃ powder plus Y₂O₃ powder and polyacrylic acid dispersant, sample C-Al₂O₃ powder plus Y³⁺ ion adsorbed and sample D-Y³⁺ ion adsorbed. The prepared suspensions were consolidated by filtration through a gypsum mold. Green compacts were densified to a 96.2–99.3% relative density at 1800–1950°C under a pressure of 39 MPa for 2 h in an Ar or reduced atmosphere. The sinterability of SiC became higher in the following order: sample D<sample C<sample A≈sample B. The sinterability of samples A and B was comparable to that of SiC hot-pressed with Al₂O₃. Dense SiC with Y₂O₃ or Al₂O₃ plus Y₂O₃ showed the following excellent mechanical properties: average four-point flexural strengths of 565–719 MPa, fracture toughness of 5.0–6.2 MPa·m^{1/2}, Weibull modulus of 5.4–11.4 and Vickers hardness of 19–22 GPa. Suppression of grain growth in SiC enhanced the mechanical properties. Key-words: Silicon carbide, Aqueous processing, Hot-pressing, Strength ## 1. Introduction Silicon carbide (SiC) is widely useful as a high temperature structural material because of its excellent high temperature strength, good oxidation resistance, high thermal shock resistance, and high hardness. However, it has been impossible to densify a submicrometer-sized SiC powder without sintering additives because of its strong covalent bonding character. Alliegro et al. 1) were the first researchers who recognized in 1956 that a silicon carbide powder with an additive could be densified under a pressure. Their extensive study on the sintering additives in the hot-pressing of SiC suggested that aluminum (either in elemental form or as an oxide) is a highly effective additive to densify SiC above 98% of theoretical. Lange²⁾ obtained in 1975 dense SiC ceramics by hot-pressing with Al₂O₃ as a sintering additive at 1950°C. The added Al₂O₃ reacted with the SiO₂ present at the SiC surfaces, and formed an eutectic melt below the melting point of Al₂O₃. The densification of SiC was achieved by the liquid phase sintering. Recently the chemical methods for the addition of sintering additives such as Al₂O₃ plus Y₂O₃ to SiC powder have been studied to control the liquid phase sintering and the resultant microstructures of SiC ceramics.³⁾⁻⁸⁾ Liden et al.⁴⁾ mixed 0.45 μ m-SiC powder with 2 mass % Al₂O₃ (50 nm) powder-1 mass % Y₂O₃ (10 nm) powder in aqueous solutions and sintered the dried green compact of 51% of theoretical density to 99.7% relative density at 1880°C for 4 h in an Ar atmosphere. Sciti and Bellosi⁹⁾ studied the densification of SiC powder of a specific surface area of 11.6 m²/g by the hot-pressing under a pressure of 30 MPa at 1880°C in vacuum. The SiC powder, 2.2-4.8 vol\% Al₂O₃ powder and 1.6-2.6 vol\% Y₂O₃ powder were mixed in ethylalcohol. The prepared suspension was dispersed by pulsed ultrasonic vibration and dried at 80°C using a rotary evaporator. The dried and sieved powder started the densification at 1470-1520°C and was sintered to a density higher than 98% at 1880°C. The densification of Al_2O_3 plus Y_2O_3 -doped SiC ceramics proceeds by the liquid phase sintering with a dissolution-precipitation mechanism of SiC in the eutectic liquid of the SiO_2 - Al_2O_3 - Y_2O_3 system. $^{10)-13)}$ The SiO_2 component forms slightly on the surface of SiC powder. The sinterability of the SiC- Al_2O_3 - Y_2O_3 compact depends on the amount and ratio of Al_2O_3 - Y_2O_3 system. $^{14)-16)}$ Uniform addition of a small amount of sintering additives to SiC is effective to increase the sinterability. The chemical methods of SiC with the sintering additives are expected to provide the following advantages: (1) a homogeneous distribution of the additives around SiC particles, (2) the increased densification rate by the well-distributed liquid and (3) the decrease of the amount of additives. $^{17)}$ In our previous papers, 7,10 we studied the interaction of the submicrometer-sized SiC particles-Al₂O₃ (0.2 μ m)-Y₂O₃ (0.1 μ m) system in the aqueous suspensions at pH 3-10. The isoelectric points of SiC, Al₂O₃ and Y₂O₃ were pH 2.5, 8.0 and 7.5, respectively. The processing in the heterocoagulation region at pH 5 gave the superior properties (high strength, high fracture toughness, and high Weibull modulus) after the hot-pressing of the consolidated powder compacts at 1800°C. In the SiC-Al₂O₃-Y₂O₃ system at pH 5.0, the negatively charged SiC particles are well dispersed by their strong repulsive interaction. On the other hand, positively charged Al₂O₃ and Y₂O₃ particles are adsorbed on the negatively charged SiC particles by their electrostatic attractive forces to form a network structure of heterocoagulated particle clusters. We also reported the interaction between SiC surfaces and Al or Y ion (added as Al(NO₃)₃ or Y(NO₃)₃) to adsorb uniformly the sintering additives. 18),19) The neutral SiC surface near the isoelectric point (\sim pH 3) adsorbed no Al³⁺ ions or just a trace. The negatively charged SiC surface at pH 4 adsorbed 0.030 mg Al³⁺ ions/m² in a 3.7 mM-Al(NO₃)₃ solution. In the pH range from 5 to 8, negatively charged SiC particles coexisted with positively charged $Al(OH)_3$ precipitate. The amount of Y^{3+} ions adsorbed on the SiC particles increased with an increase of pH. In a 0.3 M–Y $(NO_3)_3$ solution at pH 5, Y^{3+} ions of 0.854 mg were adsorbed on the SiC surface of 1 m². In this paper, the sinterability and mechanical properties of SiC were compared for the sintering additives of SiO_2 – Al_2O_3 , SiO_2 – Y_2O_3 and SiO_2 – Al_2O_3 – Y_2O_3 systems. The green compacts were formed from the corresponding aqueous SiC suspensions containing the oxide additives or metal ion and hot-pressed at 1600– 2050° C in an Ar atmosphere. ## 2. Experimental procedure ## 2.1 Preparation and consolidation of SiC suspension In this experiment, four kinds of SiC compacts were formed from the aqueous SiC suspensions at pH 5. Sample A-An α -SiC powder with the following characteristics, supplied by Yakushima Electric Industry Co., Ltd., Kagoshima, was used: chemical composition, SiC 97.5 mass%, SiO₂ 1.75 mass%, C 0.65 mass%, Al 0.025 mass%, Fe 0.027 mass%, median size $0.65 \mu m$, and a specific surface area of 13.4 m²/g. As-received α -SiC powder was mixed with α -Al₂O₃ of a median size 0.2 μ m and a specific surface area $10.5 \text{ m}^2/\text{g}$ (Al₂O₃>99.99 mass%, Sumitomo Chemical Industry Co., Ltd., Tokyo) and Y2O3 of a specific surface area $15.0 \,\mathrm{m^2/g}$ $(Y_2O_3 > 99.9 \,\mathrm{mass})_0^{1/2}$ Shinetsu Chemical Industry Co., Ltd., Tokyo). The SiC Al_2O_3/Y_2O_3 (1/0.020/0.016 volume ratio) mixed powders were dispersed at 30 vol% in an aqueous solution at pH 5.0 for 5 h.7),10) The pH of suspension was adjusted using 0.1M-NH₄OH solution. Sample B-Polyacrylic acid (PAA, average molecular weight 10000, Daiichi Kogyo Seiyaku Co., Kyoto) of 0.5 mg/m²-SiC surface was added to the SiC suspension with Al₂O₃ and Y₂O₃ powders. From the measurement of viscosity of the SiC-Al₂O₃-Y₂O₃ suspensions with PAA of 0-0.7 mg/m², the saturated amount of PAA adsorbed on the surfaces of SiC, Al₂O₃ and Y₂O₃ was estimated to be 0.5 mg/ m² because of the minimum apparent viscosity.²⁰⁾ Sample C-As-received α -SiC powder was mixed with 0.2 μ m Al₂O₃ powder (SiC/Al₂O₃ = 1/0.012 volume ratio) and dispersed at 30 vol\% solid in a 0.3 M-Y(NO₃)₃ aqueous solution at pH 5 for 12 h to adsorb Y³⁺ ions on the negatively charged SiC surface. (12),18),21) No adsorption of Y³⁺ ions on the positively charged Al₂O₃ surface was measured in the previous experiment. 11),13) From the measurement of the amount of Y3+ ions adsorbed, the volume ratio of the SiC/Al₂O₃/Y₂O₃ (as Y^{3+} ions) components was adjusted to 1/0.0117/0.0094 (1/ 0.0145/0.0145 mass ratio). Although the SiC supplier of sample C was same as that of samples A and B, the SiC purity of as-received powder was slightly higher than the powder of sample A: SiC 98.90 mass%, SiO₂ 0.66 mass%, C 0.37 mass%, Al 0.004 mass%, Fe 0.013 mass%, median size 0.8 μ m, specific surface area 13.4 m²/g. Sample D-PAA of $0.40 \ mg/m^2$ -SiC surface (saturated amount) $^{12),18),21)}$ was added to a 30 vol\(^0\) SiC suspension with Y³⁺ ions (SiC/Y₂O₃) = 1/0.010 volume ratio). The used SiC powder was same as that of sample C. The sinterability and mechanical properties of the above four kinds of SiC compacts were compared with the previously reported data of the SiC compacts with Al₂O₃ additive (samples E and F). Sample E-The SiC with $0.2 \mu m$ Al_2O_3 (purity>99.99 mass%) at the volume ratio SiC/Al_2O_3 = 1/0.035 was dispersed at 30 vol% in an aqueous solution at pH 10.0.⁵⁾ The used SiC was same as that of sample A. Sample F-As-received α -SiC powder (same as that of sample A) was dispersed at 30 vol\% solid in a 0.28 M-Al(NO₃)₃ aqueous solution at pH 5 to adsorb Al3+ ions on the negatively charged SiC surface $(SiC/Al_2O_3 = 1/0.002 \text{ volume ratio}).^{22)}$ The rheological properties of the colloidal SiC suspensions (samples A–D) were measured by a cone and plate type viscometer at room temperature in a shear rate rang from 1 to $400\,\mathrm{s^{-1}}$ (Visconic EMD, EHD type, Tokyo Keiki Co., Tokyo). The prepared each suspension was formed into a rectangular green compact with 38 mm length, 25 mm width and 20 mm height by filtration through a gypsum board at room temperature. Bakelite molds were set on a thick flat gypsum board to shape the suspension into the rectangular compact. ## 2.2 Hot-pressing and mechanical properties of SiC The consolidated green compacts were hot-pressed under a pressure of 39 MPa at 1600-2050°C for 2 h in an Ar flow. The heating and cooling rates were 10°C/min. The densities of the hot-pressed compacts were measured by the Archimedes method using kerosene. The surface of hot-pressed SiC sample was polished with 1 μ m diamond paste and etched with the mixture of NaCl/NaOH = 85/15 (molar ratio) at 600° C for 5 min in air to observe the microstructure by scanning electron microscope (SM300, Topcon Technologies, Inc., Tokyo). The hot-pressed SiC was cut into the specimens with sizes of 3 mm height, 4 mm width, and 38 mm length. The specimens were polished with SiC papers of Nos. 600 and 2000 and diamond paste of 6 and 1 µm. The Vickers hardness of the hotpressed SiC was measured at the load of 9.8 N (model MVF, Akashi Seisakusho Co., Ltd., Tokyo). The flexural strength of hot-pressed SiC was measured at room temperature by the four-point flexural method over spans of 30 mm (lower span) and 10 mm (upper span) at a crosshead speed of 0.5 mm/min. The fracture toughness was evaluated by single-edge V-notch beam (SEVNB) method (samples A-D, F) or single edge precracked beam (SEPB) method (sample E). A thin diamond blade 1 mm thick, where the tip of V-notch had a curvature radius of 20 μ m, was used to introduce V-notch of a/W = 0.1-0.6 (a: notch length, W: width of the beam). The strengths of the notched specimens (samples A-D, F) and sample E precracked by a Vickers indenter of 98 N to induce microcracks, were measured by three-point loading over a span 30 mm at a crosshead speed of 0.5 mm/min. Equation (1) provides the fracture toughness for the SEVNB method and equation (2) indicates the shape factor (Y) of crack at S/ W = 7.5. S, P, and B in Eqs. (1) and (2) are the span width, applied load and thickness of beam, respectively. $$K_{\rm IC} = \frac{3PS}{2BW^2} Y \sqrt{a} \tag{1}$$ ## 3. Results and discussion ## 3.1 Rheological properties of SiC suspensions Figure 1 shows the influcence of additives on the apparent viscosity of 30 vol% SiC suspension at pH 5. The rheological behavior of the SiC suspensions was similar to a Bingham flow. The apparent viscosity of samples A, C, and D was similar each other and became higher than that of monolithic SiC suspension. The addition of a small amount of Al₂O₃, Y₂O₃ and Y³⁺ ions enhanced the formation of a network structure of heterocoagulated particle clusters in the concentrated SiC suspension, resulting in the increased apparent viscosity. ⁷⁾, ^{1,13)}, ^{1,18)}, ^{2,1)} PAA addition (sample B) decreased the apparent viscosity of the SiC–Al₂O₃–Y₂O₃ suspension, indicating that the dispersibility of the colloidal SiC, Al₂O₃ and Y₂O₃ Fig. 1. Effect of addition of Al_2O_3 , Y_2O_3 , Y^{3+} ions and PAA on the apparent viscosity of 30 vol% SiC suspension at pH 5.0. particles was increased by the adsorption of PAA. PAA $[(-CH_2-CH(COOH)-)_n]$ releases H^+ ions and produces negatively charged polymer at pH higher than $3.^{23}$. The negatively charged PAA is adsorbed on the positively charged SiOH₂⁺ sites of the thin SiO₂ layer. $^{12),18),21),24}$. The number of SiOH₂⁺ sites is greatly smaller than that of SiO⁻ sites. The increased zeta potential of SiC to negative values with addition of PAA indicates the adsorption of negatively charged PAA on the positively charged SiOH₂⁺ sites. However, the effect of PAA addition was small on the viscosity of SiC-Y³⁺ ions suspension. Apparently, Y³⁺ ion addition and PAA addition have an opposite influence on the viscosity of the SiC suspension. In sample D, the coagulation effect by Y³⁺ ions became larger than the dispersion effect by PAA. ## 3.2 Hot-pressing of SiC compact The 30 vol\(^{0}\) SiC suspensions (samples A-D) were consolidated by filtration through a gypsum mold. The relative density of the powder compact after the calcination at 1000°C in an Ar atmosphere was as follows: sample A-47\%, sample B-56%, sample C-53%, sample D-51%. The suspension of lower apparent viscosity (Fig. 1) gave the higher packing density. Similary, the packing density for samples E and F after 1000°C calcination was measured to be 56 and 47%, respectively. Figure 2 shows the relative density of SiC hot-pressed at 1600-2050°C for 2 h under a pressure of 39 MPa in an Ar flow. The sinterability of SiC became higher in the following order of the sintering additives: sample D < sample C < sample F<sample E<sample A \approx sample B. The mixed Al₂O₃ and Y₂O₃ interact with the SiO₂ on the surface of SiC to form a liquid phase. Only the addition of Y_2O_3 (as Y^{3+} ions, sample D) needed a higher heating temperature for the densification. On the other hand, Al₂O₃ component enhanced the sinterability of SiC compact through the formation of the liquid of the SiO₂-Al₂O₃ system (samples E and F). The addition of the Al₂O₃-Y₂O₃ components had also a great effect on the densification of SiC (samples A, B and C). The above result suggests that the liquids of the SiO₂-Al₂O₃ system and SiO₂-Al₂O₃-Y₂O₃ system are more useful than that of the SiO₂-Y₂O₃ system for the decrease of sintering temperature. According to Omori and Takei,²⁵⁾ the sinterability of SiC shows a maximum at the mass ratio of $Al_2O_3/Y_2O_3 \approx 50/50$. She and $Ueno^3$ reported a high sinterability of SiC at the mass ratios of Al₂O₃/Y₂O₃= (50-75)/(25-50). These results indicate that Al_2O_3 rich composition of the Al₂O₃-Y₂O₃ additives is more useful than Y₂O₃ Fig. 2. Relative density of the SiC compact with Al₂O₃-Y₂O₃ additives as a function of hot-pressing temperature. Fig. 3. Shrinkage curves of samples C and D during the hot-pressing at 1950°C (See Table 1 for samples). rich composition for the densification of SiC. In this experiment, the compositions of the Al_2O_3 - Y_2O_3 additives in samples A, B and C were slightly enriched with Al_2O_3 . **Figure 3** shows the shrinkage curves of samples C and D during the heating under a pressure of 39 MPa. The shrinkage of both the samples with a similar packing density after 1000°C calcination (52±1%) started at about 1400°C. The liquid formation temperatures of the SiO₂-Al₂O₃-Y₂O₃ system and the SiO₂-Y₂O₃ system at the given compositions, are 1400 and 1775°C, respectively, in the phase diagrams. During the heating up to the temperatures higher than 1500°C, sample C showed a greater shrinkage than sample D. That is, the SiO₂-Al₂O₃-Y₂O₃ liquid enhanced the densification of SiC than the SiO₂-Y₂O₃ liquid in the temperature range from 1500-1950°C. The X-ray diffraction patterns for samples A-D hot-pressed at 1850-1950°C corresponded to 6H- and 4H-type SiC and no secondary phases were identified. Figure 4 shows the microstructures of dense SiC compacts hot-pressed at 1800–1950°C for 2 h. The average grain size, measured on 200 grains, was (a) $2.8 \,\mu\text{m}$ for sample A hot-pressed at 1800°C, (b) $2.0 \,\mu\text{m}$ for sample B hot-pressed at 1800°C, (c) $2.9 \,\mu\text{m}$ for sample C hot-pressed at 1850°C, (d) $2.4 \,\mu\text{m}$ for sample D hot-pressed at 1950°C. The grain size distributions in the present four samples were narrow. In our previous experiments, $^{5),22)}$ sample E hot-pressed at 1850°C and sample F hot-pressed at 1950°C provided the microstructures of average grain sizes of $5.8 \, \text{and} \, 5.2 \,\mu\text{m}$, respectively. The addition of Y_2O_3 and Al_2O_3 – Y_2O_3 additives suppressed the grain growth of SiC particles rather than the addition of Al_2O_3 additive. Enhanced dispersion of colloidal particles in the aqueous suspension by PAA addition (sample B) was effective to achieve the fine SiC microstructure. ## 3.3 Mechanical properties of densified SiC Figure 5 shows the Weibull distribution plots of the flexural strengths for the dense SiC hot-pressed at $1800-1950^{\circ}$ C. The strength at 50% fracture probability and Weibull modulus were summarized in **Table 1**. The average strength increased in the following order: sample C2 (1950°C hot-pressing) < sample B < sample A \approx sample C1 (1850°C hot-pressing) < sample D. Addition of a small amount of Y_2O_3 (1 vol%, sample D) was more effective than the addition of $Al_2O_3-Y_2O_3$ system (samples A-C) to increase the strength of SiC. The decrease of the amount of $Al_2O_3-Y_2O_3$ additives gave no significant influence on the strength of SiC hot-pressed at $1800-1850^{\circ}$ C (samples A and B: 2.0 vol% Al_2O_3 , 1.6 vol% Y_2O_3 , sample C1: 1.2 vol% Al_2O_3 , 0.94 vol% Y_2O_3). The Fig. 4. Microstructures of (a) sample A hot-pressed at 1800° C, (b) sample B hot-pressed at 1800° C, (c) sample C hot-pressed at 1850° C, and (d) sample D hot-pressed at 1950° C. Fig. 5. Weibull distribution plots for flexural strengths of dense SiC. Table 1. Mechanical Properties of SiC Hot-Pressed at 1800-1950°C under a Pressure of 39 MPa in an Ar Atmosphere | Processing and properties | Sample | | | | | | | |--------------------------------------------|------------------|------------------|----------------|------------|------------------|-----------------|------------------| | | A ¹⁰⁾ | B ²⁰⁾ | C1 | C2 | D ¹²⁾ | E ⁵⁾ | F ²²⁾ | | Al ₂ O ₃ (vol%) | 2.0 | 2.0 | 1.2 | 1.2 | | 3.5 | 0.20 | | Y ₂ O ₃ (vol%) | 1.6 | 1.6 | 0.94 | 0.94 | 1.0 | | | | PAA (mg/m²) | | 0.5 | | | 0.4 | | | | Hot-pressing temperature (°C) | 1800 | 1800 | 1850 | 1950 | 1950 | 1850 | 1950 | | Relative density (%) | 99.3 ± 0.3 | 99.0 ± 0.3 | 96.6 ± 2.3 | 96.2 ± 1.6 | 96.2 ± 1.8 | 98.3 | 99.8 | | Average grain size (μm) | 2.8 | 2.0 | 2.9 | 3.5 | 2.4 | 5.8 | 5.2 | | Weibull modulus | 6.6 | 8.2 | 5.4 | 11.4 | 6.7 | | | | Average strength (MPa) | 647 | 615 | 666 | 565 | 719 | 390 | 357 | | Fracture toughness (MPa·m ^{1/2}) | 5.0 ± 0.44 | 5.8 ± 1.11 | 6.2 ± 1.10 | 5.4 ± 0.50 | 6.2 ± 1.30 | 4.9 ± 0.30 | 4.2 ± 0.24 | | Vickers hardness (GPa) | 21.8 ± 1.9 | 21.9 ± 1.2 | 21.0 ± 3.0 | 19.0 ± 1.0 | 19.9 ± 0.5 | | | Fig. 6. Relationship between average strength and fracture toughness for the dense SiC hot-pressed at 1800-1950°C. increase of the hot-pressing temperature of sample C from 1850° to 1950° C improved the Weibull modulus but decreased the strength. As compared with the SiC with Y_2O_3 or Al_2O_3 – Y_2O_3 additive, the dense SiC with Al_2O_3 (samples E and F, Table 1), showed a lower strength (360–390 MPa). The strength (σ) of brittle ceramics is dominated by fracture toughness $(K_{\rm IC})$ and size of flaw (a) by Eq. (3), $$\sigma = \frac{K_{\rm IC}}{Y_{\gamma} / a} \tag{3}$$ where Y is the shape factor of flaw. Figure 6 shows relationship between the average strength and fracture toughness of the hot-pressed SiC. The strength increased with an increase of fracture toughness. The addition of Y₂O₃ or Al₂O₃-Y₂O₃ increased the fracture toughness of SiC than the addition of Al₂O₃. As seen in Table 1, the fracture toughness was sensitive to the average grain size of SiC and increased when the grain growth was suppressed. From the viewpoints of processing (a small amount of sintering additives, low processing temperature, high bulk density and fine microstructure) and mechanical properties (high Weibull modulus, high strength and high fracture toughness), sample B may be the most attractive SiC. Addition of PAA to sample C is also expected to provide the superior microstructure and mechanical properties. On the other hand, the following mechanical properties are reported for the pressureless-sintered SiC. Mulla and Krstic^{26),27)} sintered β -SiC with 10 mass% Al_2O_3 to 97–98% theoretical density at 2050°C for 30 min. The obtained dense SiC provided 600 \pm 50 MPa of the flexural strength and 6.0 ± 0.3 MPa·m^{1/2} of the fracture toughness. The SiC pressureless-sintered with 6 vol% Al_2O_3 and 1.6 vol% Y_2O_3 at 1900-2000°C by She and Ueno,³⁾ showed 530-625 MPa of flexural strength and 6.8-7.2 MPa·m^{1/2} of fracture toughness. Rixecker et al.²⁸⁾ mixed α -SiC with 6 vol% AlN and 4 vol% Y₂O₃ and formed green compacts by isostatic pressing of 240-600 MPa. They densified the SiC in a graphite-heated gas pressure furnace at 1950°C for 30 min under a N₂ pressures of 10 MPa. The obtained fully dense SiC provided 607 ± 80 MPa of the flexural strength and $4.4 \pm 0.2 \text{ MPa} \cdot \text{m}^{1/2}$ of the fracture toughness. As compared with the above reported data, the present SiC hotpressed was characterized by (1) the comparable strength (average strengths of 565-719 MPa after the hot-pressing of 1850–1950°C) and fracture toughness $(5.0-6.2 \text{ MPa} \cdot \text{m}^{1/2})$, and (2) the lower amount of sintering additives (1.2-2.0 vol% Al_2O_3 , 0.94-1.6 vol% Y_2O_3). The Vickers hardness at 9.8 N of the present SiC was independent of the strength and fracture toughness. The hardness was affected by the bulk density and reached 22 GPa in samples A and B of 99.0-99.3% relative density. #### 4. Conclusions - (1) The addition of a small amount of $Al_2O_3-Y_2O_3$ powders (1–2 vol% Al_2O_3 , 0.94–1.6 vol% Y_2O_3) or Al_2O_3 powder (0.2–3.5 vol%) provided a great effect on the densification of SiC during the hot-pressing at 1800–1850°C. Only the addition of Y_2O_3 (as Y^{3+} ions) needed a higher hot-pressing temperature (1950°C) for the densification. - (2) Addition of a small amount of Y_2O_3 was more effective than the addition of Al_2O_3 or Al_2O_3 – Y_2O_3 additives to increase the strength of dense SiC (average strength 719 MPa). The SiC densified with Al_2O_3 plus Y_2O_3 showed 565–666 MPa of average strength. Only the addition of Al_2O_3 resulted in the strength lower than 400 MPa. - (3) The strength and fracture toughness depended on the grain size of SiC. Suppression of grain growth of SiC enhanced the strength and fracture toughenss. - (4) Addition of PAA in the SiC suspension with Al_2O_3 plus Y_2O_3 decreased the grain size of hot-pressed SiC and enhanced the Weibull modulus and fracture toughness. ## References - Alliegro, R. A., Coffin, L. B. and Tinklepaugh, J. R., J. Am. Ceram. Soc., Vol. 39, pp. 386-389 (1956). - 2) Lange, F. F., J. Mater. Sci., Vol. 10, pp. 314-320 (1975). - 3) She, J. H. and Ueno, K., *Mater. Chem. Phys.*, Vol. 59, pp. 139-142 (1999). - Liden, E., Carlstrom, E., Eklund, L., Nyberg, B. and Calsson, R., J. Am. Ceram. Soc., Vol. 78, pp. 1761-1768 (1995). - 5) Hirata, Y., Hidaka, K., Matsumura, H., Fukushige, Y. and Sameshima, S., *J. Mater. Res.*, Vol. 12, pp. 3146–3157 (1997). - She, J. H. and Ueno, K., Mater. Res. Bull., Vol. 34, pp. 1629–1636 (1999). - 7) Wang, X. H., Shirakawa, R., Hirata, Y., Hatate, Y. and Ijichi, K., *J. Ceram. Proc. Res.*, Vol. 4, pp. 265-270 (2003). - 8) Magnani, G., Minoccari, G. L. and Pilotti, L., *Ceram. Inter.*, Vol. 26, pp. 495–500 (2000). - 9) Sciti, D. and Bellosi, A., J. Mater. Sci., Vol. 35, pp. 3849–3855 - (2000). 10) Wang, X. H. and Hirata, Y., *J. Ceram. Soc. Japan*, Vol. 112, - pp. 22-28 (2004).Hidaka, N. and Hirata, Y., Ceram. Trans., Vol. 152, pp. - 109-118 (2004). 12) Tabata, S. and Hirata, Y., *Ceram. Trans.*, Vol. 152, pp. - 119-128 (2004).13) Hidaka, N., Hirata, Y. and Sameshima, S., J. Ceram. Proc. - Res., Vol. 3, pp. 271-277 (2002). 14) Wang, L. M. and Wei, W. C., J. Ceram. Soc. Japan, Vol. 103, - pp. 434-443 (1995). 15) Lee, S. K. and Kim, C. H., *J. Am. Ceram. Soc.*, Vol. 77, pp. - 1655-1658 (1994).16) Mulla, M. A. and Krstic, V. D., Am. Ceram. Soc. Bull., Vol. - 70, pp. 439-443 (1991). Hirata, Y. and Shih, W. H., Advances in Science and Technology 14, Proceedings of 9 th CIMTEC—World Ceramics Congress, Ceramics: Getting into the 2000's-Part B, 1999, Ed. by P. Vincenzini, Techna Srl., Faenza, pp. 637-644. - Hirata, Y., Tabata, S. and Ideue, J., J. Am. Ceram. Soc., Vol. 86, pp. 5-11 (2003). - Hirata, Y., Miyano, K., Sameshima, S. and Kamino, Y., Colloids and Surface A, Vol. 133, pp. 183-189 (1998). - 20) Wang, X. H. and Hirata. Y., Ceram. Inter. (2004) in press. - 21) Tabata, S., Sameshima, S. and Hirata, Y., J. Ceram. Proc. - Res., Vol. 3, pp. 29–33 (2002). - Sameshima, S., Miyano, K. and Hirata, Y., *J. Mater. Res.*, Vol. 13, pp. 816–820 (1998). - 23) Hirata, Y., Kamikakimoto, J., Nishimoto, A. and Ishihara, Y., J. Ceram. Soc. Japan, Vol. 100, pp. 7-12 (1992). - Hirata, Y., Nakagama, S. and Ishihara, Y., J. Mater. Res., Vol. 5, pp. 640-646 (1990). - 25) Omori, M. and Takei, H., J. Am. Ceram. Soc., Vol. 65, pp. - C92-C92 (1982). - 26) Krstic, V. D., Mater. Res. Soc. Bull., Vol. XX, pp. 46-49 (1995). - 27) Mulla, M. A. and Krstic, V. D., Acta Metal. Mater., Vol. 42, pp. 303-308 (1994). - 28) Rixecker, G., Wiedmann, I., Rosinus, A. and Aldinger, F., J. Eur. Ceram. Soc., Vol. 21, pp. 1013–1019 (2001).