Comprehensive study of crystallization and phase formation in (La,Gd)BGeO₅ glass

Yoshihiro TAKAHASHI,[†] Yasuhiko BENINO,^{*} Takumi FUJIWARA and Takayuki KOMATSU^{**}

Department of Applied Physics, Tohoku University, 6-6-05, Aoba, Aoba-ku, Sendai, Miyagi 980-8579

^{*}Graduate School of Environmental Science, Okayama University, 3–1–1, Tsushimanaka, Okayama 700–8530

**Department of Materials Science and Technology, Nagaoka University of Technology,

1603-1, Kamitomioka-cho, Nagaoka, Niigata 940-2188

The glasses with $(25-x)La_2O_3 xGd_2O_3 25B_2O_3 50GeO_2$ composition corresponding to the $(La,Gd)BGeO_5$ were prepared, and the substitution effect of gadolinium ions (Gd^{3+}) on crystallization behavior and phase formation was examined by DTA, XRD and Raman techniques in detail. Ferroelectric $(La,Gd)BGeO_5$ phase with hexagonal stillwellite structure were crystallized in the composition range of x = 0-15. Although no significant change in physical properties was observed in the whole composition range, crystallization behavior was drastically changed as the progressive substitution of Gd^{3+} was carried out (i.e., crystallization of monoclinic phase of $(La,Gd)BGeO_5$ and high-pressure phase of $Gd_2Ge_2O_7$ with a triclinic structure). Structure of the glasses and crystallized phases, and the phase formation mechanism were also discussed.

©2008 The Ceramic Society of Japan. All rights reserved.

Key-words : Stillwellite, LaBGeO5, Glass, Crystallization, Phase formation

[Received June 11, 2008; Accepted September 11, 2008]

1. Introduction

Lanthanide-containing inorganic materials, such as crystal, glass and glass-ceramics, have been extensively investigated and developed for application to electric and photonic device materials. In these materials, added/substituted lanthanide (Ln) ions play a significant role for their functionalities, e.g. ferroelectricity, fluorescence and laser-oscillation.

LaBGeO₅ crystals have a hexagonal stillwellite (CeBSiO₅)type structure, in which BO₄ tetrahedra form screw chains along *c*-axis and La ions are in the ninefold vertices arranged under and over slightly distorted GeO₄ tetrahedra.¹⁾ The LaBGeO₅ crystal is ferroelectric and shows an unique phase-transition behavior.^{2)–5)} After demonstration of continuous-wave laser emissions in the green region by self-frequency doubling in Nd³⁺-doped stillwellite-type LaBGeO₅ single crystal,^{1),6)} this crystal has received much interest as a novel laser host and nonlinear optical crystal.

Since the LaBGeO₅ crystal consists of a *Ln* element and glassforming oxides (B₂O₃ and GeO₂), this crystal has two specific features, i.e., i) stoichiometric composition of LaBGeO₅ crystal, i.e., 25La₂O₃·25B₂O₃·50GeO₂, easily vitrify and the LaBGeO₅ crystalline phase is precipitated by crystallization,^{7)–9)} and ii) large quantity of Ln^{3+} could be substituted in La³⁺ site of LaBGeO₅ crystal.¹⁰⁾ Therefore, many researchers have also had a great interest in "stillwellite-related glass and glass-ceramics" from the viewpoint not only of ferroelectrics, but also of optical material. For example, Verwey et al. investigated luminescent properties and the quantum efficiency of Eu³⁺ in LaBGeO₅ glass and compared them with that of Eu³⁺ in LaBGeO₅ crystal.¹¹⁾ In addition, Kaminskii et al. proposed the Nd³⁺-doped LaBGeO₅ glass for a new laser material since pulsed stimulated emission was demonstrated in this glass at room temperature.¹²⁾ Takahashi et al. succeeded in fabricating transparent LaBGeO₅-crystallized glasses indicating strong and coherent second-harmonic generation (SHG) for the first time, and investigated the *Ln*-substitution effect on ferroelectric and SHG properties in the stillwellite-type (La,*Ln*)BGeO₅ glass-ceramics.^{10),13)-16)} They also demonstrated that the second-order optical nonlinearity of transparent LaBGeO₅-crystallized glass, which was obtained by crystallization of the stoichiometric glass, was comparable to that of LaBGeO₅ single crystal.^{17),18)} Furthermore, recently, Gupta et al. succeeded in drawing optical waveguides consisting of stillwellite-type (La,Nd)BGeO₅ and (La,Sm)BGeO₅ crystals in the corresponding glasses by laser irradiation.^{19),20)}

Thus, the stillwellite-related glass/glass-ceramics have a great potential for advanced photonic devices, i.e., laser host, wavelength conversion and optical integrated circuit. In order to apply these materials to the device components, the Lnsubstitution effects on physical properties and crystallization behavior is an important issue that we should clarify. Therefore, in this study, we prepared the glasses with composition of (25x)La₂O₃·xGd₂O₃·25B₂O₃·50GeO₂, corresponding to the stoichiometry of (La,Gd)BGeO₅, and examined their physical properties, crystallization behavior and phase formation for the purpose of comprehensive understanding of the Ln-substitution effects in the LaBGeO₅ glass. In this study, gadolinium oxide, Gd₂O₃, was chosen as a substitution substance in the LaBGeO₅ glass since introduction of gadolinium ions (Gd3+) into the glass do not disturb the optical and spectroscopic measurements due to the absence of optical absorption band in visible region.

Experimental

2.1 Sample preparation

The glass compositions examined in the present study was $(25-x)La_2O_3 \cdot xGd_2O_3 \cdot 25B_2O_3 \cdot 50GeO_2$ (x = 0-25), which correspond to the stoichiometry of $(La,Gd)BGeO_5$. The bulk glasses were prepared by a conventional melt-quenching method.

[†] Corresponding author: Y. Takahashi; E-mail: takahashi@laser. apph.tohoku.ac.jp

Commercial powders of reagent grade La₂O₃ (99.9%), Gd₂O₃ (99.9%), B₂O₃ (99.9%) and GeO₂ (99.95%) were thoroughly mixed and ground in an alumina mortar. The batch weight was 40 g. The mixtures were melted in a platinum crucible with a lid at 1300–1350°C for 20 min in an electric furnace. The melts were poured onto an iron plate heated at ~300°C and pressed to a thickness of about 1.5 mm.

2.2 Characterization

Crystallization behaviors and thermal parameters, glass transition, $T_{\rm g}$, crystallization on-set, T_x , and crystallization peak, $T_{\rm p}$, temperatures were examined by a differential thermal analysis (DTA) at a heating rate of 10 K/min. The glassy state in the melt-quenched samples, the crystalline phases present in the heat-treated glasses and the lattice constants were examined by an X-ray diffraction (XRD) analysis using Cu K α radiation. Density of the glass samples was determined using the Archimedes, method with distilled water as an immersion liquid. Refractive index at 587.6 nm (He-D line) was measured using the V-block prism, which was made from the large bulk glass, with dimension of $\sim 3 \times 3 \times 1$ cm by a precision refractometer (Kalnew, KPR-200 Model). Raman spectra of the as-quenched glasses and crystallized phases were measured using an Ar⁺ laser operating at 514.5 nm. The scattered light was detected using the system consisting of a triple grating monochrometer and a liquidnitrogen-cooled CCD device detector (HORIBA-Jobin Yvon, T64000). All of the measurements were done at room temperature.

3. Results

3.1 Physical property

Transparent and colorless melt-quenched samples were successfully fabricated in the whole composition range. The all samples showed a halo pattern in the XRD patterns, which indicated the amorphous nature of the samples. The values of density, *d*, and refractive index at 587.6 nm (He-D line), n_d , of the (La,Gd)BGeO₅ glasses studied are summarized in **Table 1**. The *d* and n_d were present in the range of ~5.0–5.5 g/cm³ and ~1.81–1.80, respectively. The increases in *d* and slight decrease in n_d were observed as progressive substitution of Gd³⁺ was carried out. The values of molar volume, V_m , and molar polarizability, α_m , which is calculated by the Lorentz–Lorenz equation,²¹⁾ are also given in Table 1.

3.2 DTA study

Figure 1 shows the DTA curves in $(25-x)La_2O_3 \cdot xGd_2O_3 \cdot xGd_2O_3$ 25B2O3.50GeO2 glasses fabricated in this study. Pulverized glasses were used in the DTA study because the pure and Gdsubstituted LaBGeO5 glasses revealed strong tendency of surface-crystallization.^{13)–15)} The glass transition, crystallization on-set, and first crystallization peak temperatures were estimated to be $T_g = 673-715^{\circ}$ C, $T_x = 806-843^{\circ}$ C and $T_p = 824-866^{\circ}$ C, respectively. Although only one crystallization peak was observed in the case of x = 0-5, in the glass with x = 10, an additional exothermic peak appeared at $T_{p2} = 1108$ °C, just below the melting temperature (1144°C). Increasing the substitution amount (x), the T_{p2} shifted to lower temperature, and eventually, the T_{p2} apparently overlapped the T_{p1} , and another crystallization peak emerged at 1053°C in the x = 25 (corresponding to GdBGeO₅ composition). The thermal parameters of (La,Gd)BGeO5 glasses are also summarized in Table 1.

3.3 XRD study

The powder XRD patterns of the (La,Gd)BGO glasses heattreated at T_{p1} for 5 h are shown in **Fig. 2**. In the heat-treated glass samples with x = 0-15 (i.e., LaBGeO₅ to La_{0.4}Gd_{0.6}BGeO₅ composition), these XRD patterns are assigned to the stillwellite phase by comparison of the crystallographic data of LaBGeO₅ (JCPDS: 41–659). In the case of x = 10-15, the diffraction intensity of crystallized phases decreased with increasing the *x*, and an unidentified peak was observed around $2\theta = 28^{\circ}$.

Figure 3 shows the lattice constants and density of the stillwellite phase with a hexagonal structure crystallized in the glasses. The density of stillwellite phases was estimated from the lattice constants of stillwellite-type (La,Gd)BGeO₅ and their molecular weight. The density of the (La,Gd)BGeO₅ glasses (*d* in Table 1) are also included. The lattice constants of stillwellite-type LaBGeO₅ crystallized in the corresponding glass (*x* = 0) were evaluated to be *a* = 0.6989 nm and *c* = 0.6860 nm. These value well corresponded to the values in the JCPDS card, i.e., *a* = 0.69923 nm and *c* = 0.68631 nm. It is seen that the lattice constants of the *a*- and *c*-axes decrease systematically with increasing the Gd₂O₃ content, according to Vegard's rule. The density of stillwellite phases (opened square) increased by approximately five percent compared to that of corresponding glasses (closed square).

The powder XRD patterns of the glass samples with x = 10-15 heat-treated around each T_{p2} for 5 h are shown in **Fig. 4**. These XRD patterns indicated more complicate patterns compared to

Table 1. Density *d*, Refractive Index at 587.6 nm (He-D Line), n_d , Molar Volume, V_m , Molar Polarizability α_m , Glass Transition, T_g , Crystallization Onset, T_x , Crystallization Peak, T_p , and Melting, T_m , Temperatures, in (25–*x*)La₂O₃·*x*Gd₂O₃·25B₂O₃·50GeO₂ Glasses

x	density/ gcm ⁻¹	n _d	V _m /cm ³ mol ⁻¹	$\alpha_{\rm m}/{\rm \AA}^3$	$T_{\rm g}/^{\circ}{\rm C}$	$T_x/^{\circ}\mathrm{C}$	$T_{\rm p1}/^{\circ}{\rm C}$	$T_{\rm p2}/^{\circ}{\rm C}$	$T_{\rm m}/^{\circ}{\rm C}$	phase around $T_{\rm pl}$	phase around T_{p2}
0	4.957	1.8150	30.49	5.239	673	808	824	_	1194	stil.*	_
2.5	5.045	1.8175	30.14	5.190	678	806	824	-	1158	stil.	-
5	5.100	1.8162	30.00	5.159	684	811	830	-	1159	stil.	-
10	5.195	1.8120	29.80	5.106	692	827	843	1108	1144	stil.	mono.?
13	5.262	1.8110	29.63	5.073	693	831	870	1083	1137	stil.	<i>mono.</i> **
15	5.313	1.8115	29.48	5.050	698	829	856	1006	1146	stil.	mono.
20	5.452	1.8055	29.07	4.952	708	843	868	911	1175	β '-Gd ₂ Ge ₂ O ₇	mono.
25	5.520	1.8055	29.04	4.947	715	841	866	1053	>1200	β '-Gd ₂ Ge ₂ O ₇ , unkn.***	mono.

*stil. : stillwellite phase.

***mono*. : monoclinic phase.

****unkn.* : unknown phase (A phase).

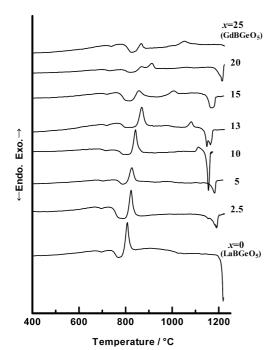


Fig. 1. DTA curves of (25–*x*)La₂O₃·*x*Gd₂O₃·25B₂O₃·50GeO₂ glasses. Heating rate was 10 K/min.

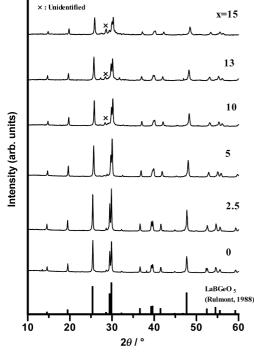


Fig. 2. Powder XRD patterns of (La,Gd)BGO crystallized glasses obtained by heat-treatment at T_p for 5 h.

those of stillwellite phases seen in Fig. 2. In the glass with x = 13 and 15, great similarity of XRD patterns to that of the monoclinic *Ln*BGeO₅ compounds were confirmed by comparison to XRD data of monoclinic phase. The data of EuBGeO₅ is included in Fig. 4 as a representative of monoclinic phase because the mean ionic radius of Ln^{3+} in the glass with x = 15(0.1290 nm) is close to the radius of Eu³⁺ (0.1260 nm).²²⁾ Although the XRD pattern of the crystallized glass with x = 10 was

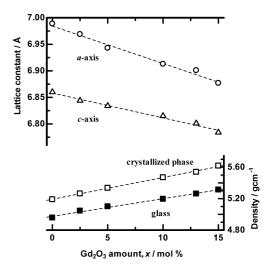


Fig. 3. Lattice constants and density of the still wellite-type phases crystallized in the (La,Gd)BGeO_5 glasses.

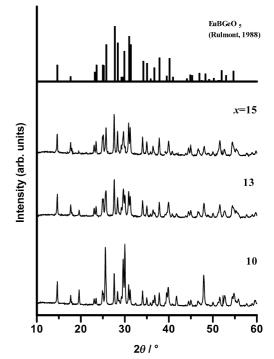


Fig. 4. Powder XRD patterns of the glass samples with x = 10-15 heat-treated around T_{p2} for 5 h.

correspondent to neither stillwellite-type nor monoclinic-type, both features of stillwellite and monoclinic phases were confirmed.

With regard to the glasses with x = 20 and 25, their crystallization behavior was different from those of the glasses with x =0–15: **Figure 5** shows the powder XRD patterns of the glass sample with x = 20 heat-treated near T_{p1} and T_{p2} for 5 h. Since the position of T_{p1} (868°C) was relatively close to that of T_{p2} (912°C) in this glass, the following heat-treatment temperatures were chosen in order to crystallize the glass with x = 20 into the phases corresponding to the T_{p1} and T_{p2} , separately, i.e., 838°C (T_{p1} –30°C) and 930°C (higher than T_{p2}). Unlike the case of the glasses with x = 0–15 heat-treated at $\sim T_{p1}$, more complicate XRD pattern was found after crystallization around T_{p1} , instead of the stillwellite phase. The XRD pattern of crystallized phase indi-

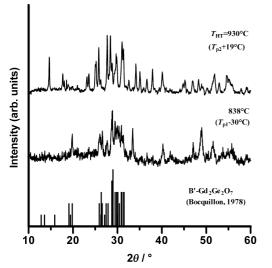


Fig. 5. Powder XRD patterns of the glass sample with x = 20 heat-treated near T_{p1} and T_{p2} for 5 h.

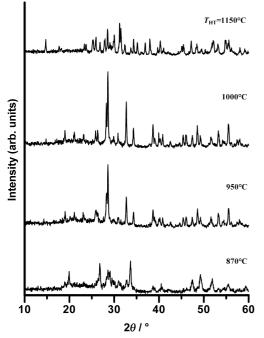


Fig. 6. Powder XRD patterns of glass sample with x = 25 (GdBGeO₅ composition) heat-treated at various temperatures for 5 h.

cated the great similarity to that of B'-Gd₂Ge₂O₇, which was a high-pressure phase in $Gd_2Ge_2O_7$ (JCPDS: 34–1168), whereas the monoclinic phase was crystallized at 930°C.

The powder XRD patterns of the glass sample with x = 25, i.e., GdBGeO₅, heat-treated at various temperatures are shown in **Fig. 6**. In here, four temperatures were selected as crystallization condition, i.e., 870° C ($\sim T_{p1}$) for 5 h, and 950° C, 1000° C and 1150° C (higher than T_{p2}) for 3 h. The XRD pattern of the glass heat-treated near T_{p1} was almost identical with that of crystallized phase in the glass with x = 20 around T_{p1} . In addition, the XRD pattern of phase crystallized at 1150° C could be assigned to the monoclinic phase. However, in the glasses heat-treated at 950° C and $1000C^{\circ}$, the XRD pattern was quite different from the phases formed at either around T_{p1} or T_{p2} , i.e., B'-Gd₂Ge₂O₇ and

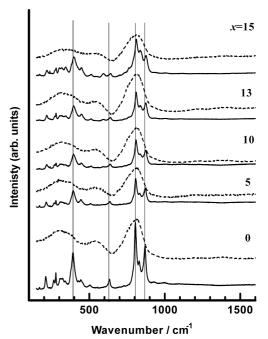


Fig. 7. Raman scattering spectra of the as-quenched (dashed line) with x = 0-15 and the crystallized glasses obtained at T_{p1} for 5 h (solid line).

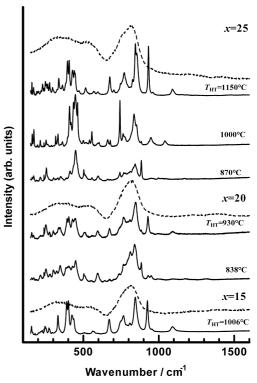


Fig. 8. Raman scattering spectra of the as-quenched (dashed line) with x = 15-25 and the crystallized glasses obtained at various temperatures for 5 h (solid line).

monoclinic phases. Since the crystalline phase could not be assigned to any phases reported so far, this phase is hereafter called as "*A phase*" in this paper for the sake of convenience.

3.4 Raman scattering spectra

Figures 7 and 8 show the Raman scattering spectra of the as-

quenched (dashed line) and crystallized glasses (solid line) with x = 0-15 and x = 15-25, respectively. All of the glasses indicated the broadened bands, which were characteristic of amorphous state, mainly around 800–900 cm⁻¹, 500–600 cm⁻¹, and 300–400 cm⁻¹. On the other hand, after crystallization of (La,Gd)BGeO₅ glasses with x = 0-15 at T_{p1} for 5 h, the Raman spectra showed very sharp bands, indicating transformation from amorphous to crystal state. The Raman bands were mainly observed at 800–900 cm⁻¹, ~630 cm⁻¹ and 350–450 cm⁻¹. These spectra measured in this study indicated considerable similarity to that of LaBGeO₅ phase reported by Rulmont and Tarte.²³ Although the Raman spectra were almost identical in the crystallized glasses with x = 0-15, the Raman scattering intensity was decreased by the substitution of Gd³⁺ (i.e., the increase in x).

As seen in Fig. 8, the complicate Raman spectrum, implying lower symmetry of the crystal structure, was obtained in the glass with x = 15 annealed at T_{p2} (1006°C) for 5 h, as well as the results from XRD study. Fine and sharp Raman peaks were observed at ~1100 cm⁻¹, 650–950 cm⁻¹ and 300–450 cm⁻¹. The similar spectra also could be confirmed in the glasses with x =20 and 25 annealed around T_{p2} . These Raman spectra have great similarities to that of monoclinic GdBGeO₅. Particularly, the crystallized phase from the glass with x = 25, i.e., stoichiometry of GdBGeO₅, showed completely same Raman spectrum of monoclinic GdBGeO₅.²³⁾ Furthermore, the spectra of phases crystallized around T_{p1} in the glasses with x = 20 and 25 were different from those of stillwellite- and monoclinic-types, and the distinct Raman peak could not be detected at ~1100 cm⁻¹ in the spectra.

4. Discussion

4.1 Physical property of (La,Gd)BGeO₅ glasses

The increase in density, d, and the decrease in molar volume, V_m , were confirmed by the substitution of Gd³⁺ for La³⁺ in the (La,Gd)BGeO₅ glasses. These are probably due to the introduction of Gd³⁺ with a larger atomic number and smaller ionic radius than La³⁺. On the contrary, the n_d and α_m tended to decrease with increasing the *x*. This implies that the Gd³⁺ has a small polarizability compared to the La³⁺. The decrease in refractive index with decreasing the ionic radius of Ln^{3+} is also confirmed in the Ln_2O_3 -GeO₂ and Ln_2O_3 -TiO₂-GeO₂ glass systems.²⁴

4.2 Crystallization and phase formation in (La,Gd)BGeO₅ glass

Although the (La,Gd)BGeO5 glasses did not show any remark-

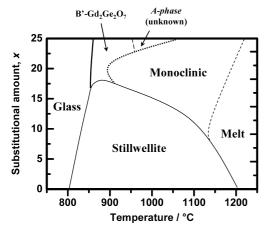


Fig. 9. Schematic picture of phase formation in (La,Gd)BGeO₅ glasses.

able changes in the physical properties, the drastic change in crystallization behavior was confirmed as the progressive substitution of Gd^{3+} was carried out: **Figure 9** shows the schematic picture of phase formation in the (La,Gd)BGeO₅ glasses based on the DTA, XRD and Raman results in this study. From this map, one can notice the following features about the phase formation;

(1) The still wellite phases crystallized in the large composition range (x = 0-15)

(2) In higher Gd-containing glasses (x = 10-15), the monoclinic phases crystallized after formation of the stillwellite phase.

(3) Further increasing the x, B'-Gd₂Ge₂O₇ and unknown phases appeared instead of the stillwellite phase.

4.2.1 Stillwellite-type phase

Crystallization of stillwellite phase in the $(25-x)La_2O_3 \cdot xGd_2O_3 \cdot xGd_2O_3$ $25B_2O_3 \cdot 50GeO_2$ glasses was clarified in the range of x = 0-15 by the XRD and Raman studies. It is seen that the lattice constants decrease with the increase of x in accordance with Vegard's rule. In addition, the shift of Raman peaks to higher wavenumber with the substitution of Gd3+ was also confirmed. According to the spectroscopic study of stillwellite LaBGeO5 and monoclinic GdBGeO₅ phases by Rulmont and Tarte,²³⁾ the Raman bands appeared at 800–900 cm^{-1} and ~630 cm^{-1} , and 350–450 cm^{-1} are assigned to the symmetric stretching vibration of BO4 and GeO4 tetrahedra, and the bending vibration mode of GeO₄ tetrahedra, respectively. Since the GeO₄ tetrahedral units connect with the La³⁺ in the case of stillwellite phase,¹⁾ the Raman peak shift observed in the stillwellite phases crystallized in (La,Gd)BGeO5 glasses is probably due to the introduction of Gd³⁺ with higher field strength (i.e., Z/a^2 ; Z: charge of cation, a: distance between cation and anion, Gd^{3+} and O^{2-} in this case) relative to the La³⁺. Therefore, from the results of both lattice constant and Raman spectra, it is expected that the substituted Gd³⁺ is substitutionally incorporated into the crystal structure, i.e., formation of the stillwellite-type (La,Gd)BGeO5.

In the x = 10-15, the decrease in peak intensities of XRD and Raman bands was confirmed, implying the reduction of crystallinity. In addition, the unidentified peak was detected at 2θ ~28°. In *Ln*BGeO₅ borogermanates, the hexagonal stillwellite phases are obtained for *Ln* = La to Pr, and Nd (low-temperature phase), and the monoclinic phases are obtained for *Ln* = Nd (high-temperature phase), Sm to Er and Y with small ionic radii by a solidstate reaction.²³⁾ It means that the ionic radius of Gd³⁺ is too small to crystallize the stillwellite phase. Consequently, it is considered that smallness of ionic radius of Gd³⁺ leads to the deterioration of crystallinity, and formation of the unidentified phase involving Gd₂O₃, which could not be incorporate into the stillwellite phases, in the substitution range of x = 10-15.

The increase in density of stillwellite phases obtained by crystallization of the (La,Gd)BGeO₅ glasses is attributed to the rearrangement of glass structure and the decrease in its free volume. In addition, difference of density between the crystallized stillwellite phases and the corresponding glasses was about 5% in the composition range of x = 0-15. This result implies that substitution of Gd³⁺ for La³⁺ gives no significant change into the structure of (La,Gd)BGeO₅ glasses. In fact, the Raman spectra of (La,Gd)BGeO₅ were almost identical in the whole composition range. According to Ref. 25, the Raman band observed around 800–900 cm⁻¹, 500–600 cm⁻¹, and 300–400 cm⁻¹ are attributed to the antisymmetric stretching of BO₄ and GeO₄ tetrahedra, the bending vibrations of T–O–T (T: B or Ge) bonds, and the La–O vibration, respectively. This indicates that the structural units of (La,Gd)BGeO₅ glasses is very close to that of stillwelite-type phases. Therefore, it is strongly suggested that there is a considerable structural similarity between the crystallized phases and the corresponding glasses in the scale of short/medium-range order. Such structural similarity of the corresponding glass to the crystallized phase is also reported in other germanate systems.^{26),27)}

4.2.2 Monoclinic-type phase

Although the stillwellite and monoclinic phases consist of the tetrahedral BO₄ and GeO₄ units, the crystal structures are quite different from each other: **Figure 10** shows the crystal structure of stillwellite and monoclinic phases. The structure of monoclinic phase has the great similarity to that of datoite, CaBSiO₄(OH), i.e., the layered sheets, in which the BO₄ and GeO₄ tetrahedra are orderly distributed.²⁸⁾ Space group of the monoclinic phase in *Ln*BGeO₅ compound is *P*2₁/*a* (centrosymmetry),²⁸⁾ meaning that the monoclinic phase possesses no ferroelectricity and SHG.

The XRD pattern of glass with x = 10 heat-treated near T_{p2} (1108°C), which was much higher than the T_{p1} (843°C) corresponding to the crystallization of stillwellite phase, revealed both stillwellite- and monoclinic-type features. This suggests that the T_{p2} was temperature, at which the stillwellite phase transforms to monoclinic one. In addition, it was also confirmed that the monoclinic phase tended to crystallize at lower temperature when the Gd-substitution was progressively carried out. As described above, the monoclinic-type LnBGeO5 crystallizes in the case of Ln = Nd-Er and Y, which have smaller ionic radii than La³⁺. Particularly, in the case of Ln = Nd, the stillwellite-type and monoclinic-type phases exist as the low- and high-temperature phase, respectively.²³⁾ These mean that the smaller the ionic radius of Ln becomes, the more stable the monoclinic-type is thermodynamically. Therefore, it is considered that the progressive substitution of Gd³⁺ leads to decrease in the mean ionic radius of lanthanide in the (La,Gd)BGeO₅ glasses and consequently, the T_{p2} , which corresponds to the stillwellite-monoclinic phase (that is, lowtemperature-high-temperature phase) transition temperature, shifts to lower temperature, i.e.,

(*La*,Gd)BGeO₅ (stillwellite-type), $T < T_{p2}$ → (*La*,Gd)BGeO5 (monoclinic-type), $T-T_{p2}$

As seen in Fig. 10, the stillwellite-type LaBGeO₅ consists of BO₄ unit without non-bridging oxygen (NBO) and GeO₄ unit with two NBO. On the other hand, the monoclinic GdBGeO₅ consists of BO₄ and GeO₄ units with one NBO. Although the monoclinic phases crystallized in the glasses with x = 15-25

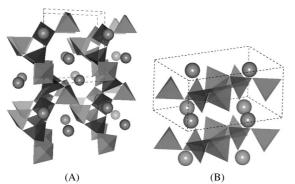


Fig. 10. Crystal structures of (A) stillwellite and (B) monoclinic phases in LnBGeO₅ compounds. The dotted line indicates unit cell. Sphere, and polyhedra of bright and dark colors correspond to Ln^{3+} , and GeO₄ and BO₄ tetrahedral units, respectively.

showed the Raman bands at ~1100 cm⁻¹ (Fig. 9), such band could not be detected in the stillwellite phases (Fig. 8). It is clearly indicated that the Raman band around 1100 cm⁻¹ is due to the presence of tetrahedral BO₄ unit with NBO. Although the Raman bands around 700–900 cm⁻¹ corresponding to the antisymmetric stretching mode of Ge–O–Ge and stretching mode of Ge–O⁻ were observed,^{29),30)} the band around 1100 cm⁻¹ could not be detected in the glasses with x = 10-25, which crystallized the monoclinic phases. Therefore, it is deduced that the Ln^{3+} more predominantly bonds to the GeO₄ unit than the BO₄ unit in (La,Gd)BGeO₅ glasses and thus, this is the reason why the first crystallized phase is not the monoclinic phase, but the stillwellite and B'-Gd₂Ge₂O₇ phases in the glasses with x = 10-15 and x =20–25, respectively.

4.2.3 High-pressure B'-Gd₂Ge₂O₇ phase

According to Bocquillon et al., there are four types of structure in Gd₂Ge₂O₇ compound, that is, X-, B'-, H- and P-phases.³¹⁾ Whereas the X-phase (tetragonal) crystallized at an ambient pressure, the B'-(triclinic), H-(crystal system is unknown) and Pphases (cubic) crystallized under high pressure of approximately 1.5-4 GPa, 4-5 GPa and 5.8 GPa, respectively.³¹⁾ The XRD patterns of crystalline phases obtained by heat-treatment near the $T_{\rm pl}$ in the glasses with x = 20 and 25 indicated the great similarity to that of B'-Gd₂Ge₂O₇ with a triclinic structure by comparison of the crystallographic data (JCPDS: 34-1168). In addition, the crystallized phases in both glasses show the complicated Raman spectra, which reflect the low-symmetry. Therefore, these crystallized phases are considered to be the high-pressure phase of B'-Gd₂Ge₂O₇. This result also indicates that crystallization process of glass has a potential to synthesize the crystalline phase, which could not be obtained by a conventional solid-state reaction, i.e., metastable and high-pressure phases. For example, metastable $K_2(Nb_{1/3}Te_{2/3})_2O_{4.8}$ phase is formed only through crystallization of glass in K₂O-Nb₂O₅-TeO₂ system.³²

Although the crystal structure of B'-Gd₂Ge₂O₇ phase belongs to triclinic-system, its space group is not described in the JCPDS card (34–1168). Therefore, confirmation of SHG was attempted by means of Kurtz (powder) technique³³⁾ in the B'-Gd₂Ge₂O₇ phase obtained from the glass with x = 25. As a results, the second-harmonic (SH) intensity was approximately 0.15 times compared to that of pulverized α -quartz, i.e., $I_{2\omega}/I_{2\omega}, \alpha$ -quartz~0.15, suggesting that the crystal structure of B'-Gd₂Ge₂O₇ phase is noncentrosymmetry, that is, *P*1.

4.2.4 A phase (unknown phase)

The crystalline phases formed by heat-treatment at 950°C and 1000°C in the glass with x = 25, i.e., *A phase*, could not be assigned to any phases in Gd₂O₃–GeO₂ system reported so far. Therefore, the *A phase* is supposed to be a new compound in this system. Although it is quite difficult to examine the crystal structure of *A phase*, we speculated the structural features on the basis of the results in this study as possible.

The *A phase* would have a low-symmetric structure because of the complicated Raman spectra. In addition, the Raman bands around 800–900 cm⁻¹ attributed to the vibration of GeO₄ unit, and at ~1040 cm⁻¹ due to the presence of tetrahedral BO₄ unit with NBO (as mentioned above) also observed. Therefore, it is considered that the *A phase* consists of both the BO₄ unit with NBO and GeO₄ units. Furthermore, the SH intensity of *A phase*crystallized sample obtained by the heat-treatment at 1000°C was evaluated to be $I_{2\omega/I_{2\omega,\alpha-quartz}}$ ~0.8. This strongly suggests that the *A phase* is noncentrosymmetric. The *A phase* is possibly formed between the T_{p1} and T_{p2} through the reaction between the B'-Gd₂Ge₂O₇ phase and B₂O₃ component in a residual amorphous phase, i.e.,

 $Gd_2Ge_2O_7$ (B'-phase) + B_2O_3 (in amorphous phase) \rightarrow A-phase.

5. Summary and remarks

The effect of lanthanide (Ln) substitutions on physical properties, crystallization behavior and phase formation in the (25x)La₂O₃·xGd₂O₃·25B₂O₃·50GeO₂ glasses, which are stoichiometry of the (La,Gd)BGeO₅, were clarified by means of the DTA, XRD and Raman techniques. Although the substitution of Gd³⁺ for La³⁺ provided no significant change in the physical properties, the drastic change in crystallization behavior and phase formation was confirmed by the substitution: The stillwellite-type phases singly crystallized in the glass with small quantity of Gdsubstitution amount (x = 0-5). Further substitution of Gd³⁺ led to the formation of monoclinic phase with centrosymmetry (i.e. no SHG active). The Raman study in the glass and crystallizedglass samples revealed the closeness of glass structure to those of stillwellite-type LaBGeO5 and the predominant-distribution of Ln³⁺ in the vicinity of GeO₄ units in the (La,Gd)BGeO₅ glasses. In the glasses with x = 20 and 25, the high-pressure phase of B'-Gd₂Ge₂O₇ and the unidentified phase (i.e, A-phase) were precipitated by heat-treatment around T_{p1} . It was proposed that the Aphase consists of the BO4 unit with non-bridging oxygen and GeO₄ unit, and is a new phase in the Gd₂O₃-B₂O₃-GeO₂ system.

Controlling of ferroelectric and nonlinear optical properties of the stillwellite-type glass-ceramics, and patterning of stillwellite phase in the corresponding glasses are achieved by the *Ln*substitution for La³⁺ in the LaBGeO₅ glass.^{10),18),19)} The *Ln*substitution is quite important for the functional designs in the stillwellite-type glass-ceramics. However, the progressive substitution of smaller Ln^{3+} in (La,Gd)BGeO₅ glasses leads to the decrease in crystallinity of the stillwellite phases and the formation of impurity (unidentified) phase, simultaneously. In addition, one can realize that the region of monoclinic phase tends to expand as the Gd³⁺ is largely substituted, as seen in Fig. 9. Therefore, it is necessary to suppress the formation of impurity and monoclinic phases if we desire to fabricate the ferroelectric or optical functional materials in the (La,*Ln*)BGeO₅ glass/glass-ceramics with high Ln^{3+} concentration.

Acknowledgements This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government. The crystal graphics in this paper was drawn by VICS (VIsualization of Crystal Structure) in the VENUS (Visualization of Electron/Nuclear densities and Structures) system developed by Dr. Ruben A. Dilanian and Dr. Fujio Izumi.

References

- A. A. Kaminskii, A. V. Butashin, I. A. Maslyanizin, B. V. Mill, V. S. Mironov, S. P. Rozov, S. E. Sarkisov and V. D. Shigorin, *Phys. Stat. Sol.* (a), 125, 671–696 (1991).
- 2) S. Yu. Stefanovich, B. V. Mill and A. V. Butashin, *Sov. Phys. Crystallogr.*, **37**, 513–515 (1992).
- A. Onodera, B. A. Strukov, A. A. Belov, S. A. Taraskin, H. Haga, H. Yamashita and Y. Uesu, *J. Phys. Soc. Jpn.*, 62, 4311–4315 (1993).

- 4) E. L. Belokoneva, W. I. F. David, J. B. Forsyth and K. S. Knight, J. Phys.: Condens. Matter, 9, 3503–3519 (1997).
- I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov and B. Strukov, *Phys. Stat. Sol.* (b), 214, 423–439 (1999).
- D. Jaque, J. Capmany, J. A. S. García, A. Brenier, G. Boulon and J. G. Solé, *Opt. Mater.*, 13, 147–157 (1999).
- 7) V. N. Sigaev, S. Yu. Stefanovich, P. D. Sarkisov and E. V. Lopatina, *Glass Phys. Chem.*, **20**, 392–397 (1994).
- V. N. Sigaev, S. Yu. Stefanovich, P. D. Sarkisov and E. V. Lopatina, *Glass Phys. Chem.*, 20, 398–403 (1994).
- S. Yu. Stefanovich and V. N. Sigaev, *Glass Phys. Chem.*, 21, 253–262 (1995).
- Y. Takahashi, A. Iwasaki, Y. Benino, T. Fujiwara and T. Komatsu, Jpn. J. Appl. Phys., 41, 3771–3777 (2002).
- J. W. M. Verwey, D. V. D. Voort, G. J. Dirksen and G. Blasse, J. Solid State Chem., 89, 106–117 (1990).
- 12) A. A. Kaminskii, B. V. Bill, A. V. Butashin and V. D. Shigorin, *Inorg. Mater.*, 28, 1643–1644 (1992).
- Y. Takahashi, Y. Benino, V. Dimitrov and T. Komatsu, J. Non-Cryst. Solids, 260, 155–159 (1999).
- 14) Y. Takahashi, Y. Benino, V. V. Dimitrov and T. Komatsu, *Phys. Chem. Glasses*, 41, 225–228 (2000).
- 15) Y. Takahashi, Y. Benino, T. Fujiwara and T. Komatsu, J. Appl. Phys., 89, 5282–5287 (2001).
- 16) Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara and T. Komatsu, *Mater. Sci. Eng. B*, 120, 155–160 (2005).
- 17) Y. Takahashi, Y. Benino, T. Fujiwara and T. Komatsu, *Jpn. J. Appl. Phys.*, 41, L1455–L1458 (2002).
- 18) Y. Takahashi, K. Saitoh, Y. Benino, T. Fujiwara and T. Komatsu, J. Ceram. Soc. Japan, Suppl., 112, S1168–1172 (2004).
- P. Gupta, H. Jain, D. B. Williams, J. Toulouse and I. Veltchev, *Opt. Mater.*, 29, 355–359 (2006).
- P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino and T. Komatsu, J. Am. Ceram. Soc., 91, 110–114 (2008).
- V. Dimitrov and T. Komatsu, J. Non-Cryst. Solids, 249, 160– 179 (1999).
- 22) R. D. Shannon, Acta Cryst. A, 32, 751-767 (1976).
- 23) A. Rulmont and P. Tarte, J. Solid State Chem., 75, 244–250 (1988).
- 24) H. Nasu, J. Matsuoka, O. Sugimoto, M. Kida and K. Kamiya, J. Ceram. Soc. Japan, 101, 43–47 (1993).
- C. Coussa, C. Martinet, B. Champagnon, L. Grosvalet, D. Vouagner and V. Sigaev, J. Phys.: Condens. Matter, 19, 266220 (2007).
- 26) P. Pernice, A. Aronne, M. Catauro and A. Marrota, J. Non-Cryst. Solid, 210, 23–31 (1997).
- 27) Y. Takahashi, K. Kitamura, S. Inoue, Y. Benino, T. Fujiwara and T. Komatsu, *Jpn. J. Appl. Phys.*, 44, 7177–7181 (2005).
- 28) E. L. Belokonova, B. V. Mill, A. V. Butashin and A. A. Kaminskii, *Inorg. Mater.*, 27, 1429–1436 (1991).
- 29) H. Verweij and J. H. J. M. Buster, J. Non-Cryst. Solids, 34, 81–99 (1979).
- 30) T. Furukawa and W. B. White, J. Chem. Phys., 95, 776–784 (1991).
- G. Bocquillon, J. Maugrion and J. Loriers, *Comptes Rendus C*, 287, 5–8 (1978).
- 32) H. G. Kim, T. Komatsu, K. Shioya, K. Matusita, K. Tanaka and K. Hirao, J. Non-Cryst. Solids, 208, 303–307 (1996).
- 33) S. K. Kurtz and T. T. Perry, J. Appl. Phys., 39, 3798–3813 (1968).