Synthesis of hydrogen-carbon monoxide fuel from methane-carbon dioxide mixed gases

Soichiro SAMESHIMA, Yoshihiro HIRATA, Kosuke HAMASAKI, Hironori OHSHIGE and Naoki MATSUNAGA*

Department of Advanced Nanostructured Materials Science and Technology, Kagoshima University,

1-21-40, Korimoto, Kagoshima 890-0065

*Department of Applied Chemistry and Chemical Engineering, Kagoshima University,

1-21-40, Korimoto, Kagoshima 890-0065

Thermal decomposition of methane (CH₄ \rightarrow C + 2H₂) needed a high temperature above 900°C and only 15% of methane decomposed at 1000°C. On the other hand, 90% of methane decomposed to form H₂ and C at 700–900°C by passing through the 70 vol% Al₂O₃–30 vol% Ni porous compact. When 50% CH₄–50% CO₂ mixed gases were passed through the porous compact with Ni, 55% H₂–45% CO fuel was produced at 700–900°C (CH₄ + CO₂ \rightarrow 2H₂ + 2CO). In a high temperature range from 700 to 900°C, the reforming rate of CH₄ with CO₂ became higher than the pyrolysis rate of CH₄. The above results were well explained by the thermodynamic calculation along the distance from the surface of Ni–Al₂O₃ compact against the inlet gas.

©2009 The Ceramic Society of Japan. All rights reserved.

Key-words: Methane, Carbon dioxide, Hydrogen, Carbon monoxide, Nickel

[Received November 5, 2008; Accepted February 19, 2009]

Introduction

Biogas produced from excrement of domestic animals contains 60 vol% of methane, 40 vol% of carbon dioxide and a small amount of H_2S and NH_3 . Methane reforming with carbon dioxide produces hydrogen and carbon monoxide.

$$CH_4 + CO_2 \rightarrow 2H_2 + 2CO \tag{1}$$

This reaction is expected to suppress carbon deposition from CH₄ at a high temperature. The produced H₂ and CO can be used as fuels of solid oxide fuel cell (SOFC) and react with O²⁻ ion supplied from solid electrolyte to form H₂O, CO₂ and electrons. The exhaust CO₂ is again mixed with biogas to make a closed system of CO \rightarrow CO₂ \rightarrow CO. That is, both methane and carbon dioxide of biogas can be used as fuels of SOFC. The above closed system of biogas is useful in producing electric power and suppresses the exhaust of CH₄ and CO₂ into air.

In our previous paper,⁴⁾ the reaction of the methane-carbon dioxide system was studied using 30 vol% Ni–Al $_2$ O $_3$ porous compact. Methane reacted with carbon dioxide in the Ni–Al $_2$ O $_3$ catalyst to form H $_2$ and CO above 400°C. As a parallel reaction, thermal decomposition of CH $_4$ proceeded to form H $_2$ and C in the temperature range from 400 to 700°C.

$$CH_4 \rightarrow C + 2H_2 \tag{2}$$

This carbon deposition caused the blockage of gas flow in several hours. In the lower temperature below 600° C, the formed CO decomposed to CO_2 and C.

$$2CO \rightarrow CO_2 + C \tag{3}$$

This is another process of carbon deposition. Although CH₄

reforming with CO_2 is an attractive reaction, the above parallel reactions of carbon deposition should be prevented to maintain the smooth gas flow during the reforming of CH_4 with CO_2 .

Figure 1 shows the standard Gibbs free energy (ΔG°) for Eqs. (1)–(3) as a function of temperature (a) and fractions of CH₄, CO₂, H₂ and CO (b,c) for Eqs. (1) and (2). Equations (1) and (2) proceed at a higher temperature but Eq. (3) is suppressed at a high temperature. An actual chemical reaction is dominated by Gibbs free energy (ΔG) which is related to ΔG° and partial pressures of present gases. The influence of temperature judged from ΔG° is described above. Another factor is the gas composition in

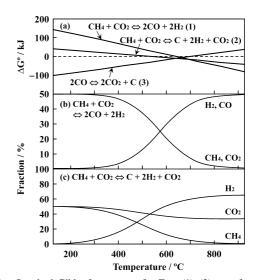


Fig. 1. Standard Gibbs free energy for Eqs. (1)–(3) as a function of temperature (a) and fractions of CH₄, CO₂, H₂ and CO (b, c) for Eqs. (1) and (2).

[†] Corresponding author: Y. Hirata; E-mail: hirata@apc.kagoshima-u. ac.in

the chemical system. The composition of outlet gas can be analyzed by gas chromatography. Using these data (temperature, gas composition), the CH₄ reforming with CO₂ is discussed quantitatively. Following the previous experiment, we examined CH₄ reforming with CO₂ through a Ni–Al₂O₃ porous compact in a higher temperature range from 700 to 900°C. In addition, the important parallel reaction, pyrolysis of methane (Eq. (2)), was also investigated to understand the actual reaction of CH₄ reforming with CO₂. Fortunately, it was clarified that a high temperature reaction is favorable to suppress the carbon deposition and accelerates the CH₄ reforming with CO₂. The measured results were well understood by the corresponding thermodynamic calculation.

2. Experimental procedure

An alpha-alumina powder (Al₂O₃ > 99.99 mass%, median size 0.48 µm, Sumitomo Chemical Co., Ltd., Japan) was immersed into 1.4 mol/l Ni(NO₃)₂ solution at a volume ratio of Ni / Al₂O₃ = 30 / 70. The suspension was freeze-dried and then calcined at 400°C for 1 h. The calcined NiO-Al₂O₃ mixed powders were dispersed at 10 vol% solid in double distilled water and consolidated into a columnar shape of 16 mm diameter and 10 mm height by casting in a gypsum mold. The NiO-Al₂O₃ compact was calcined at 800°C for 1 h in air. The calcined NiO-Al₂O₃ compact with 11 mm diameter was set inside of a SiO₂-Al₂O₃ tube and was reduced to Ni by passing 70 vol% H2-30 vol% Ar gas at 800°C for 10 h.5) Methane gas was fed at 50 ml/min at 360–1000°C. Similarly, a mixed gas of CH_4 : $CO_2 = 1$: 1 volume ratio was fed into the Ni-Al₂O₃ compact at 50 ml/min at 700-900°C. A gas flow rate was measured by soap-film flow meter. Since the experiment was carried out under ambient pressure, the flow rate was not influenced by the gas pressure. The phases of Ni-Al₂O₃ compact before and after the reaction with CH₄ or CH₄-CO₂ mixed gases were identified by X-ray diffraction (RINT 2200, Rigaku Co., Tokyo, Japan). The composition of outlet gas was analyzed by gas chromatography (GT 3800, Yanaco Co., Kyoto, Japan) with activated carbon using thermal conductivity detector at 100°C to determine the reforming fractions of methane and carbon dioxide, and the amounts of formed hydrogen and carbon monoxide. The outlet gas of 0.5 ml was injected into Ar carrier gas at 100°C. The amount of carbon deposition in the Ni-Al₂O₃ compact was measured with thermogravimetry and differential thermal analysis (TG-DTA) at a heating rate of 10°C/min up to 1000°C in air (Thermoflex, Rigaku Co., Tokyo, Japan). Carbon is burned out as carbon dioxide and Ni is oxidized to NiO in air. The method to analyze the carbon content is reported in our previous paper.⁴⁾

3. Results

3.1 Characteristics of Ni–Al₂O₃ compact

No reaction between α -Al₂O₃ and NiO was observed in the X-ray diffraction patterns of NiO-Al₂O₃ compact heated at 800°C. The NiO-Al₂O₃ compact was reduced to Ni-Al₂O₃ in the H₂-rich atmosphere at 800°C and no reaction occurred between Ni and Al₂O₃. The NiO-Al₂O₃ compacts heated in air contained 56% of open pores and 3% of closed pores. The open porosity increased to 63.5% and the closed pore decreased to 0.1% by the reduction of NiO to Ni with H₂ gas (NiO(s) + H₂(g) \rightarrow Ni(s) + H₂O(g)).

3.2 Pyrolysis of methane

Figure 2 shows the temperature dependence of pyrolysis of CH₄ in a SiO₂–Al₂O₃ tube. Thermal decomposition of CH₄ without Ni–Al₂O₃ catalyst started above 900°C. Only 15% of CH₄

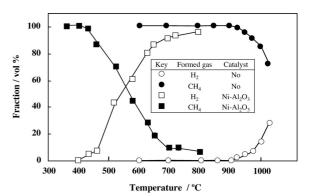


Fig. 2. Temperature dependence of pyrolysis characteristic of methane with and without Ni–Al $_2O_3$ catalyst.

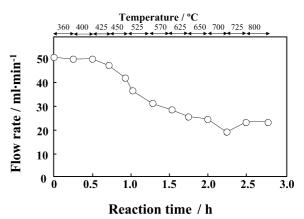


Fig. 3. Flow rate of outlet gas during the pyrolysis of CH_4 over $Ni-Al_2O_3$ catalyst at $360-800^{\circ}C$.

decomposed at 1000°C. As a product, formation of H₂ was recognized. The high stability of CH₄ at a high temperature results from the strong sp³ hybrid orbital. Reduction of pyrolysis temperature is needed to use as a fuel of low temperature SOFC operated at 500-800°C. When CH₄ is passed through the Ni-Al₂O₃ compact, the pyrolysis temperature of CH₄ decreased to 425°C (reaction time: 0.25 h). Ni catalyst plays an important role for the decomposition of methane. It is reported that Ni catalyst promotes the dissociation of CH₄ adsorbed on Ni (CH₄ \rightarrow CH_{1-x} + xH) at a low temperature. ⁶⁾ **Figure 3** shows the flow rate of outlet gas through the Ni-Al₂O₃ compact during the continuous experiment of pyrolysis of methane at 360-800°C. The flow rate of CH₄ (≈ 50 ml/min) was almost independent of the reaction temperatures at 360-425°C because of little decomposition of CH₄ as shown in Fig. 2. However, the flow rate gradually decreased due to the carbon deposition in the Ni-Al₂O₃ compact at high temperatures. Carbon deposition over the Ni-Al₂O₃ compact and the inside of the SiO₂-Al₂O₃ tube were observed after the pyrolysis for 3 h. The amount of deposited carbon was 54.0 g / 100 g of Ni-Al₂O₃ catalyst · h⁻¹. The XRD pattern of Ni-Al₂O₃ compact after the reaction at 800°C confirmed the formation of graphite at $2\theta = 26.6^{\circ}$ of diffraction angle using Cu K α . The similar carbon deposition occurred for the reforming of 50 vol% CH₄ - 50 vol% CO₂ system at 400-700 °C in our previous paper.4)

3.3 Reforming of methane with carbon dioxide Figure 4 shows the flow rate of CH₄–CO₂ gas passed through

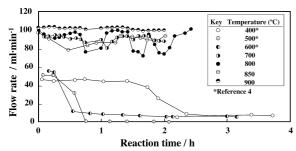


Fig. 4. Flow rate of outlet gas during the reforming of methane with carbon dioxide through Ni–Al $_2$ O $_3$ compact at 400–900°C.

the Ni-Al₂O₃ compact at 700-900°C. No blockage was measured for 2 h at each reaction temperature. Furthermore, the flow rate of the outlet gas became two times (100 ml/min) larger than that of inlet gas. The above results indicate that (1) Ni in the Al₂O₃ compact promotes the reforming of methane with carbon dioxide to form hydrogen and carbon monoxide in a temperature range above 700°C, (2) this reforming is accompanied by the increase of the volume of gases (two times), and (3) carbon deposition is significantly suppressed. These results are discussed more latterly. On the other hand, Fig. 4 also shows the flow rate of outlet gas during the reactions at 400-600°C in our previous experiment. 4) The flow rate of the outlet gas decreased within 1 h at 500-600°C. In a low temperature range, the parallel reactions by Eqs. (2) and (3) are more accelerated rather than the reforming of CH₄ with CO₂ (Eq. (1)). As shown in Fig. 2, the pyrolysis of CH₄ started easily above 400°C over Ni catalyst. In the low temperature region, CO₂ is relatively stable over Ni catalyst and this stability of CO2 inhibits the chemical reaction with CH₄ (Fig. 5).

Figure 5 shows the fractions of methane, carbon dioxide, hydrogen and carbon monoxide as a function of reaction temperature. The solid circles indicate the average fraction for 0.6-2.4 h of reforming of CH₄ where no blockage of passing gas occurred in the Ni–Al₂O₃ compact. The fraction of methane gradually decreased with increasing reaction temperature. However, CO₂ was stable at temperatures below 600° C. This behavior of CO₂ is related to the small amount of CO at $400-600^{\circ}$ C. The pyrolysis of methane is responsible for the formation of H₂ in the low temperature range. On the other hand, decomposition of CO₂ and formation of CO became significant in the high temperature range. This result is associated with the reforming of CH₄ with CO₂ (Eq. (1)) and is supported by the smooth flow of outlet gas in Fig. 4. At a high temperature (> 700° C), carbon deposition is suppressed by the high reactivity of CO₂.

Figure 6 shows the H_2 / CO molar ratio as a function of reaction temperature. In the lower temperature range from 400 to 600°C, the average ratio was in the range from 1.9 to 2.9. In the higher temperature range, the ratio approached 1.2. This result indicates the reforming of CH_4 with CO_2 becomes a dominant reaction. After the reaction at $700-900^{\circ}C$, no carbon deposition was observed on the $Ni-Al_2O_3$ compact and inside of the $SiO_2-Al_2O_3$ tube. The amount of carbon deposited in the $Ni-Al_2O_3$ compact after the continuous experiments at $700-900^{\circ}C$ was 0.06 g/100 g $Ni-Al_2O_3$ compact · h^{-1} by TG-DTA analysis. When Eqs. (1) and (2) proceed at the same time, the molar ratio of H_2/CO gases formed (*Y*) is equal to the molar ratio of CH_4/CO_2 gases used (*X*). The *Y* values measured at $TOO-900^{\circ}C$ were about 1.2 (Figs. 5 and 6), indicating less consumption of CO_2 as compared with the amount of CH_4 used ($X = 1 \text{ mol } CH_4$)

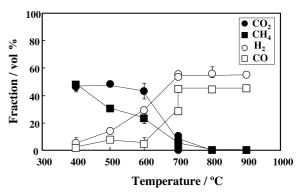


Fig. 5. Fractions of CH_4 , CO_2 , H_2 and CO as a function of reaction temperature in CH_4 reforming with CO_2 .

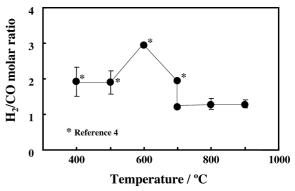


Fig. 6. H₂/CO molar ratio as a function of reaction temperature in CH₄ reforming with CO₂.

 $0.82~\text{mol}~\text{CO}_2$). However, little CO_2 was detected in the exhaust gas at 700–900°C. This reason is not clear at this moment and further investigation is needed to explain the mass balance of CO_2

Discussion

4.1 Pyrolysis of methane

In the reforming of CH_4 with CO_2 , pyrolysis of CH_4 occurs as a parallel reaction in the low temperature range. This parallel reaction is accompanied by the deposition of carbon in the $Ni-Al_2O_3$ compact and should be prevented to maintain the smooth flow of the mixed gas. Fortunately, the reforming rate of CH_4 with CO_2 becomes a dominant reaction as compared with the pyrolysis of CH_4 at a higher temperature. However, we should have the knowledge about the pyrolysis of CH_4 to suppress the carbon deposition in the $Ni-Al_2O_3$ compact.

The free energy for Eq. (2) is expressed by Eq. (4),

$$\Delta G(2) = \Delta G^{\circ}(2) + RT \ln \left(\frac{P_{H_2}^2}{P_{CH_4}} \right)$$
 (4)

where P_{CH_4} and P_{H_2} are the partial pressures in the reaction system. **Figure 7** (a) shows the fractions of inlet and outlet gases through the Ni–Al₂O₃ porous compact. The fractions of outlet gases can be analyzed by gas chromatography but it is difficult to analyze the fraction profile in the Ni–Al₂O₃ compact. In Fig. 7, a simple linear relation is drawn to understand the essence of carbon deposition in the compact. The fractions of CH₄ (*A*) and H₂ (*D*) in the Ni–Al₂O₃ compact are represented by Eqs. (5) and

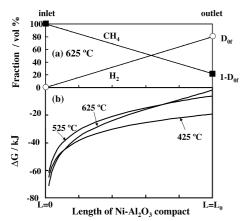


Fig. 7. Fraction profile (a) of CH₄ and H₂ along Ni–Al₂O₃ compact at 625°C and free energy of pyrolysis of CH₄ (b) as a function of distance from the surface of the compact at 425–625°C. The ΔG at 425 and 525°C was calculated using the D_{0f} values measured at these temperatures.

(6) as afunction of distance (L) from its surface, respectively,

$$A = 1 - \left(\frac{L}{L_0}\right) D_{0f} \tag{5}$$

$$D = \left(\frac{L}{L_0}\right) D_{0f} \tag{6}$$

where $D_{0\rm f}$ is the fraction of H_2 in the outlet gas and L_0 (= 7.6 mm) is the thickness of Ni–Al₂O₃ compact. Equations (5) and (6) are substituted for $P_{\rm CH_4}$ and $P_{\rm H_2}$ in Eq. (4), respectively, because of the relation, $P_{\rm CH_4} + P_{\rm H_2} = 1$ atm. Equation (7) represents $\Delta G(2)$ in the Ni–Al₂O₃ compact as a function of distance L from the surface of the compact against the flow of CH₄.

$$\Delta G(2) = \Delta G^{\circ}(2) + RT \ln \frac{(L D_{0f})^2}{L_0(L_0 - LD_{0f})}$$
 (7)

Figure 7(b) shows $\Delta G(2)$ at 425–625°C for the measured $D_{0\mathrm{f}}$. The condition L=0 results in $\Delta G\to -\infty$, indicating the progress of pyrolysis of methane at L=0. The condition of $L=L_0$ results in $\Delta G(2)=\Delta G^\circ$ (2) + RT ln $[D_{0\mathrm{f}}{}^2/(1-D_{0\mathrm{f}})]$. The calculated $\Delta G(2)$ value was minus values in whole Ni–Al₂O₃ compact at a given temperature. This thermodynamic model explains the pyrolysis of CH₄ in the whole part of Ni–Al₂O₃ compact and the resultant carbon deposition, which causes the blockage of flow of CH₄. As seen Fig. 2, $D_{0\mathrm{f}}$ is 0 below 400°C. This condition provides $\Delta G\to -\infty$ in Eq. (7). This calculation implies that pyrolysis of methane occurs thermodynamically at 300–400°C but the reaction rate is very slow. As a result, no H₂ was measured at temperature below 400°C.

4.2 Reforming of CH₄ with CO₂

In the reforming of CH₄ with CO₂ (Eq. (1)), the following ΔG (1) is derived.

$$\Delta G(1) = \Delta G^{\circ}(1) + RT \ln \left(\frac{P_{\text{CO}}^2 P_{\text{H}_2}^2}{P_{\text{CH}_4} P_{\text{CO}_2}} \right)$$
 (8)

Figure 8 (a) shows the fraction profile of CH₄ (A), CO₂ (B), H₂ (*D*) and CO (*E*) in the Ni/Al₂O₃ compact ($L_0 = 8.8$ mm). The fraction of each gas is presented as follows,

$$A = A_0 - \left(\frac{A_0 - A_{0f}}{L_0}\right) L \tag{9}$$

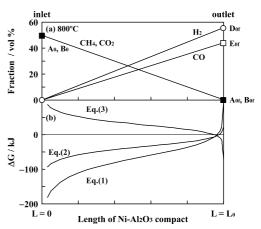


Fig. 8. Fraction profile (a) of CH_4 , CO_2 , H_2 and CO along $Ni-Al_2O_3$ compact at $800^{\circ}C$ and free energy (b) for reforming of CH_4 with CO_2 , pyrolysis of CH_4 and decomposition of CO ($2CO \rightarrow C + CO_2$) along the distance of $Ni-Al_2O_3$ compact from the surface at $800^{\circ}C$.

$$B = B_0 - \left(\frac{B_0 - B_{0f}}{L_0}\right) L \tag{10}$$

where A_0 and B_0 are the fractions of CH₄ and CO₂ at L=0, respectively.

$$D = \left(\frac{L}{L_0}\right) D_{0f} \tag{11}$$

$$E = \left(\frac{L}{L_0}\right) E_{0f} \tag{12}$$

These relations are substituted for Eq. (8) to express ΔG (1) as a function of distance L (Eq. (13)).

$$\Delta G(1) = \Delta G^{\circ}(1) + RT \ln \left(\frac{L}{L_0}\right)^4 \frac{(E_{0f} D_{0f})^2 L_0^2}{[(L_0 A_0 - (A_0 - A_{0f})L)][(L_0 B_0 - (B_0 - B_{0f})L)]}$$
(13)

This equation results in $\Delta G \rightarrow -\infty$ at L=0 and in ΔG (1)= ΔG° (1) + RT ln $[(E_{0f} D_{0f})^2 / A_{0f} B_{0f})]$ at $L=L_0$. Similarly, the parallel reaction by Eq. (2) (pyrolysis of CH₄) is expressed by Eq. (14),

$$\Delta G(2) = \Delta G^{\circ}(2) + RT \ln \left(\frac{L}{L_0}\right)^2 \frac{D_{0f}^2 L_0}{L_0 A_0 - (A_0 - A_{0f}) L}$$
(14)

 ΔG (2) approaches $-\infty$ at L = 0 and ΔG° (2) + $RT \ln \left(D_{0f}^2 / A_{0f}\right)$ at $L = L_0$. The parallel reaction by Eq. (3) is expressed by Eq. (15),

$$\Delta G(3) = \Delta G^{\circ}(3) + RT \ln \left(\frac{L_0 B_0 - (B_0 - B_{0f})L}{L_0} \right) \left(\frac{L_0}{L E_{0f}} \right)^2$$
(15)

 ΔG (3) in Eq. (15) approaches $+\infty$ at L=0 and results in ΔG° (3) $+ RT \ln \left(B_{\rm of} / E_{\rm of} \right)^2$ at $L=L_0$.

Figure 8 (a) shows the fraction profile of CH₄, CO₂, H₂ and CO along Ni–Al₂O₃ compact. The corresponding ΔG at 800°C is shown in Fig. 8 (b). The CH₄ reforming with CO₂ proceeds in the wide range of Ni–Al₂O₃ compact against the flow of CH₄–CO₂ mixed gases. Similarly ΔG (2) for pyrolysis of methane pro-

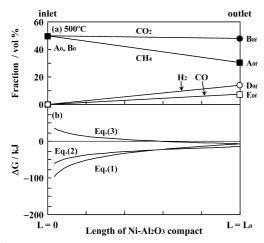


Fig. 9. Fraction profile (a) of CH_4 , CO_2 , H_2 and CO along $Ni-Al_2O_3$ compact at $500^{\circ}C$ and free energy (b) for reforming of CH_4 with CO_2 , pyrolysis of CH_4 and decomposition of CO ($2CO \rightarrow C + CO_2$) along the distance of $Ni-Al_2O_3$ compact from the surface at $500^{\circ}C$.

ceeds in the Ni–Al₂O₃ compact. However, ΔG (3) for Eq. (3) becomes a plus value in the wide range of the Ni–Al₂O₃ compact. However, the measured amount of carbon in the Ni–Al₂O₃ compact was significantly small at 700–900°C. This result is related to the reaction rates for Eqs. (1)–(3). When ΔG is an enough minus value, the dominant reaction is controlled by the reaction rate. From the measured results, the reforming rate by Eq. (1) is far higher rather than that by Eq. (2) at 700–900°C. This is supported by the formation of CO in a high temperature range.

Figure 9 (a) shows the fraction profile of CH₄, CO₂, H₂ and CO along the Ni–Al₂O₃ compact. The ΔG values for Eqs. (1)–(3) at 500°C are shown in Fig. 9 (b). The ΔG values for Eqs. (1) and (2) became minus values in the wide range of Ni–Al₂O₃ compact. On the other hand, the ΔG value for Eq. (3) changed from a plus value to a minus value as the length of the compact increases. The thermodynamic calculation indicates that Eqs. (1)

and (2) proceed at 500° C. In fact, a large amount of carbon was formed in the low temperature range from 400 to 600° C. However the reactivity of CO_2 is very low as seen in Fig. 5. That is, Eq. (2) (pyrolysis of CH_4) is a dominant reaction at $400-600^{\circ}$ C. As discussed above, the dominant reaction shifts to Eq. (1) (reforming of CH_4 with CO_2) in a high temperature range because of the high reactivity of CO_2 , which gives a higher reaction rate rather than the pyrolysis rate of CH_4 .

5. Conclusions

- (1) Pyrolysis of CH_4 occurred above 900°C and only 15% of CH_4 decomposed thermally over no catalyst at 1000°C.
- (2) When the mixed gas of 50% CH_4 –50% CO_2 was passed through Ni–Al₂O₃ compact, pyrolysis of CH_4 ($CH_4 \rightarrow C + 2H_2$) proceeded dominantly at 400–600°C. However, the reforming of CH_4 with CO_2 ($CH_4 + CO_2 \rightarrow 2H_2 + 2CO$) became a dominant reaction in the higher temperature range from 700 to 900°C. As a result, no blockage of the flowing gas was measured.
- (3) Thermodynamic calculation of pyrolysis of CH_4 and reforming of CH_4 with CO_2 along the length of the $Ni-Al_2O_3$ compact explained well the measured results.

References

- 1) Y. Lu and L. Shaefer, J. Power Sources, 135, 184–191 (2004).
- M. Nagamori, Y. Hirata and S. Sameshima, *Mater. Sci. Forum*, 544-545, 985–988 (2007).
- H. Purwanto and T. Akiyama, *Inter. J. Hydrogen Energy*, 31, 491–495(2006).
- S. Sameshima, Y. Hirata, J. Sato and N. Matsunaga, *J. Ceram. Soc. Japan*, 116, 374–379 (2008).
- S. Sameshima, Y. Hirata and K. Higashinakagawa, Proceedings of 6th Pacific Rim Conference on Ceramic and Glass Technology, Am. Ceram. Soc., CDR (2006).
- Y. Cui, H. Zhang, H. Xu and W. Li, Appl. Catal. A: General, 318, 79–88 (2007).
- Y. Hirata, Y. Terasawa, N. Matsunaga and S. Sameshima, Ceram. Int., online available (2009).