Journal of Pharmacological Sciences
Online ISSN : 1347-8648
Print ISSN : 1347-8613
ISSN-L : 1347-8613
Forum Minireview
ATP- and Adenosine-Mediated Signaling in the Central Nervous System: Adenosine Stimulates Glutamate Release From Astrocytes via A2a Adenosine Receptors
Tomoyuki Nishizaki
Author information
JOURNAL FREE ACCESS

2004 Volume 94 Issue 2 Pages 100-102

Details
Abstract

Adenosine enhanced intracellular Ca2+ concentrations in astrocytes via A2a adenosine receptors involving protein kinase A (PKA) activation. The Ca2+ rise is inhibited by brefeldin A, an inhibitor of vesicular transport; but not by neomycin and U73122, phospholipase C inhibitors; xestospongin, an IP3-receptor inhibitor; ryanodine, a ryanodine-receptor inhibitor; TMB-8, an endoplasmic reticulum calcium-release blocker; octanol, a gap-junction inhibitor; or cadmium, a non-selective, calcium-channel blocker. Adenosine stimulates astrocytic glutamate release via an A2a adenosine receptors/PKA pathway, and the release is inhibited by the vesicular transport inhibitors brefeldin A and bafilomycin A1. A2a adenosine receptors and the ensuing PKA events, thus, are endowed with vesicular Ca2+ release from an unknown intracellular calcium store and vesicular glutamate release from astrocytes.

Content from these authors
© The Japanese Pharmacological Society 2004
Previous article Next article
feedback
Top