表面科学
Online ISSN : 1881-4743
Print ISSN : 0388-5321
ISSN-L : 0388-5321
特集:生体代替表面の新展開
人工生体膜表面による再生医療マテリアル
渡邉 順司石原 一彦
著者情報
ジャーナル フリー

2004 年 25 巻 1 号 p. 23-29

詳細
抄録

A porous matrix for 3-D cell culture was designed in terms of highly water intrusion property and complete dissolution. The important characteristics of the matrix involve (i) easy cell invasion for 3-D cell culture and (ii) complete degradation and dissolution after tissue regeneration. A bioinspired polymers were prepared by using enantiomeric oligo(L-(D-)lactic acid)macromonomers, 2-methacryroyloxyethyl phosphorylcholine (MPC), and n-butyl methacrylate. Then, the porous matrix was formed by stereocomplexation between L-form and D-form oligomers. The matrix that consisted of aggregation of micro particles and also inter-connecting structure were observed by scanning electron microscopy. The water intrusion property was estimated by measuring the static contact angle of water droplet. The angle gradually decreased within 2 min, and the droplet completely spreaded out due to water intrusion into the matrix. On the other hand, the contact angle did not change on the conventional porous poly(D, L-lactic acid-co-glycolic acid). These results indicated that the bioinspired polymer stereocomplex had a high affinity to the water intrusion. Further, cell invasion into the matrix was carried out by using mouse fibroblast cells. In 5 days, the cells could attach and invade into the matrix. The cell invasion was observed only with the porous matrix. In conclusion, the bioinspired polymer could form porous matrix by stereocomplexation, and the matrix was available to 3-D cell culture.

著者関連情報

この記事はクリエイティブ・コモンズ [表示 - 非営利 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc/4.0/deed.ja
前の記事 次の記事
feedback
Top