Phase Relationship in a BaO-Bi₂O₃-TiO₂ System and Electrical Properties of BaTiO₃ with Addition of Bi₄Ti₃O₁₂ Takaya Akashi¹, Kouji Morita¹, Toshio Hirai¹, Hisanori Yamane² and Takashi Goto¹ A phase relationship of the $BaO-Bi_2O_3-TiO_2$ system at $1273\,K$ was studied using a solid state reaction. A new compound of $BaBi_6Ti_{20}O_{50}$ was found in this ternary system. In the $BaTiO_3-Bi_4Ti_3O_{12}$ pseudo-binary system, the solid solution of $Bi_4Ti_3O_{12}$ into $BaTiO_3$ was observed up to $4\,\text{mol}\%$ $Bi_4Ti_3O_{12}$. The lattice parameters of tetragonal $BaTiO_3$ varied depending on $Bi_4Ti_3O_{12}$ content in the solid solution range. The structure of $BaTiO_3$ became cubic with the addition of more than $4\,\text{mol}\%$ $Bi_4Ti_3O_{12}$. The temperature dependence of permittivity obeyed the Curie-Weiss-like behavior in the solid solution range. The highest permittivity of $BaTiO_3$ decreased and the peak of permittivity became broader with increasing $Bi_4Ti_3O_{12}$ content. (Received May 22, 2001; Accepted June 22, 2001) Keywords: BaTiO₃, Bi₄Ti₃O₁₂-doped BaTiO₃, BaBi₆Ti₂₀O₅₀, phase relationship, solid solution, permittivity, electrical conductivity #### 1. Introduction BaTiO₃ is a well-known ferroelectric material, ^{1–3)} which is widely applied in various devices in the electroceramic industry. However, the sharp increase in its permittivity at the Curie temperature is a serious obstacle to its application in capacitors. To solve this problem, the doping of BaTiO₃ with several elements has been conducted to modify the temperature dependence of permittivity. For example, the Curie temperature shifted to lower temperatures with SrTiO₃ doping.⁴⁾ On the other hand, the Curie temperature shifted to higher temperatures with PbTiO₃ doping.^{4,5)} With ZrO₂ doping, the Curie temperature shifted to lower temperatures and a broad temperature dependence around the Curie temperature was attained.⁶⁾ There have been a few reports on the doping of $BaTiO_3$ with $Bi_4Ti_3O_{12}$. $^{7,8)}$ However, the solubility range of $BaTiO_3$ with $Bi_4Ti_3O_{12}$ and the effect of the addition of $Bi_4Ti_3O_{12}$ to $BaTiO_3$ on the dielectric properties of $BaTiO_3$ are not understood. In this study, we constructed a phase diagram of the $BaO-Bi_2O_3-TiO_2$ ternary system at 1273 K and investigated the effect of the addition of $Bi_4Ti_3O_{12}$ on the electrical properties of $BaTiO_3$. ## 2. Experimental Procedures $BaCO_3$, Bi_2O_3 and TiO_2 (purity: 99.9%) were mixed with a small amount of ethanol in an agate mortar. The mixed powder was calcined at 973 K for 12 h. The calcined powders were pressed into disk-shaped pellets and sintered at 1273 K for 12 h. The crystal structure was examined by powder X-ray diffraction (XRD) and a precession camera. The compositions of the specimens were determined by induction plasma spectroscopy (ICP). To obtain dense specimens for dielectric measurements, disk-shaped pellets were sintered at 1373 to 1623 K for 24 h. The permittivity and the electrical conductivity were measured by an a.c. impedance analyzer (Solartron 1260, 1296) at temperatures from 293 to 1133 K in air in the frequency range between 0.1 Hz and 10 MHz. #### 3. Results and Discussions Figure 1 shows the phase relationship of the BaO–Bi₂O₃–TiO₂ systems at 1273 K obtained in the present study. We examined the phases of about 80 compositions as indicated in Fig. 1. Ba₂TiO₄, BaTiO₃, Ba₄Ti₁₃O₃₀ and BaTi₄O₉ in the BaO–TiO₂ pseudo-binary system have already been reported. In the Bi₂O₃–TiO₂ pseudo-binary system, Bi₄Ti₃O₁₂ and Bi₂Ti₄O₁₁ have been identified. In the BaO–Bi₂O₃–TiO₂ pseudo-ternary system, BaBi₄Ti₄O₁₅ has been confirmed. Aurivillius *et al.*⁹⁾ synthesized Ba₂Bi₄Ti₅O₁₈ by cooling the melt at 1427 K. Subbanna *et al.*¹⁰⁾ prepared BaBi₈Ti₇O₂₇ by heating a mixture of BaCO₃, Bi₂O₃ and Cr₂O₃ between 1200 and 1300 K. In the present study, the phases of Ba₂Bi₄Ti₅O₁₈ and BaBi₈Ti₇O₂₇ were not observed at 1273 K. Fig. 1 Phase relationship in the BaO-Bi₂O₃-TiO₂ system at 1273 K. ¹Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan ²Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan Fig. 2 X-ray diffraction pattern of BaBi₆Ti₂₀O₅₀. Fig. 3 Variation of lattice parameters of $BaTiO_3$ with the addition of $Bi_4Ti_3O_{12}$. A new compound of BaBi₆Ti₂₀O₅₀ was found in the BaO-Bi₂O₃-TiO₂ ternary system. The single crystal of the new compound was synthesized by cooling the melted BaBi₆Ti₂₀O₅₀. The new compound had a modulated structure¹¹⁾ having a main lattice structure and a sublattice structure. The space group of the main lattice structure was not precisely determined (either I2, Im or I2/m), but the lattice parameters were determined to be a = 1.073 nm, b = 0.381 nm, $c_1 = 0.336 \,\mathrm{nm}$ and $\beta = 92.5^{\circ}$. The space group of the sublattice structure was $P2_1/a$, and the lattice parameters of a, band β were the same as those of main lattice, but the lattice parameter $c_2 = 0.529$ nm. Figure 2 shows the XRD pattern of the new compound. Each XRD peak in Fig. 2 was completely indexed by calculation (hklm) using those lattice parameters. A detailed structural analysis of this new compound will be reported elsewhere. 12) Figure 3 shows the variation of lattice parameters of $BaTiO_3$ with the addition of $Bi_4Ti_3O_{12}$. In the $BaTiO_3$ – $Bi_4Ti_3O_{12}$ pseudo-binary system, $BaTiO_3$ had a tetragonal structure having lattice parameters a and c in the range of $Bi_4Ti_3O_{12}$ content between 0 and 4 mol%. The tetragonality of $BaTiO_3$ decreased with increasing $Ba_4Ti_3O_{12}$ Fig. 4 Temperature dependence of permittivity of BaTiO $_3$ with the addition of Bi $_4$ Ti $_3$ O $_{12}$ at 10^4 to 10^6 Hz. BT: BaTiO $_3$, BiT: Bi $_4$ Ti $_3$ O $_{12}$. content. The structure of $BaTiO_3$ became cubic at more than $4\,\text{mol}\%$ $Bi_4Ti_3O_{12}$. Therefore, the solubility of $Bi_4Ti_3O_{12}$ in $BaTiO_3$ was estimated to be $4\,\text{mol}\%$. Figure 4 shows the temperature dependence of the permittivity of BaTiO₃ with the addition of Bi₄Ti₃O₁₂ at 10⁴ to 10⁶ Hz. The value of permittivity and the Curie temperature of undoped BaTiO₃ were in agreement with the reported values. 1-3) As shown in Fig. 4, the temperature at the highest permittivity (T_{max}) shifted to lower temperatures with increasing Bi₄Ti₃O₁₂ content. Three peaks of the temperature dependence of permittivity were observed for BaTiO3 corresponding to the three phase transition of BaTiO₃. (i.e., cubic to tetragonal to orthorhombic with decreasing temperature). In BaTiO₃ with Bi₄Ti₃O₁₂, on the other hand, one broad peak was observed to become broader and lower with increasing Bi₄Ti₃O₁₂ content. M'Peko et al. 1 have reported the temperature dependence of permittivity of BaTiO₃ with Bi₄Ti₃O₁₂ in the range between 1 and 4 mol% Bi₄Ti₃O₁₂. They reported that the Curie temperature of BaTiO₃ was unchanged by the addition of $Bi_4Ti_3O_{12}$. The different results between the study by M'Peko *et al.* and the present study may be due to the sintering times of M'Peko *et al.* being too short (1.9 ks) to obtain stable and homogeneous specimens. Figure 5 shows the relation between the reciprocal permittivity and temperature for $BaTiO_3$ with the addition of $Bi_4Ti_3O_{12}$ at temperatures above T_{max} . The experimental data for $BaTiO_3$ obeyed the Curie-Weiss law. For $BaTiO_3$ with less than 4 mol% $Bi_4Ti_3O_{12}$, the relationship between reciprocal permittivity and temperature was almost linear, exhibiting Curie-Weiss-like behavior. For $BaTiO_3$ with more than 4 mol% $Bi_4Ti_3O_{12}$, the behavior deviated from the Curie-Weiss law significantly. Figure 6 depicts the effect of the addition of $Bi_4Ti_3O_{12}$ to $BaTiO_3$ on T_{max} and ε_{max} , where T_{max} is the temperature at the peak permittivity shown in Fig. 4 and ε_{max} is the highest permittivity at T_{max} . The ε_{max} decreased with increasing $Bi_4Ti_3O_{12}$ content. The T_{max} showed the minimum at around 4 to 5 mol% addition of $Bi_4Ti_3O_{12}$. The second phase which appeared in the samples with more than 4 mol% $Bi_4Ti_3O_{12}$ Fig. 5 Temperature dependence of the reciprocal permittivity of $BaTiO_3$ with the addition of $Bi_4Ti_3O_{12}$. $BT: BaTiO_3$, $BiT: Bi_4Ti_3O_{12}$. Fig. 6 Effect of the addition of Bi₄Ti₃O₁₂ to BaTiO₃ on $T_{\rm max}$ and $\varepsilon_{\rm max}$. $T_{\rm max}$: the temperature at the peak permittivity shown in Fig. 4. $\varepsilon_{\rm max}$: the highest permittivity at $T_{\rm max}$. was $BaBi_4Ti_4O_{15}$, whose Curie temperature and highest permittivity were 700 K and 3000, respectively. The reason for the slight increase of $T_{\rm max}$ for the sample with more than 5 mol% $Bi_4Ti_3O_{12}$ may be the high Curie temperature of $BaBi_4Ti_4O_{15}$ phase. Figure 7 shows the temperature dependence of permittivity for the samples with 4 mol% Bi₄Ti₃O₁₂ at frequencies from $100\,\mathrm{Hz}$ to $100\,\mathrm{kHz}$. The $\varepsilon_{\mathrm{max}}$ increased and T_{max} decreased with increasing frequency. This relaxor-type behavior was observed for the sample with 4 to 5 mol\% Bi₄Ti₃O₁₂. Several researchers reported that BaTiO₃ could be changed to relaxortype materials by substitution of aliovalent elements.^{6,13)} However, the present study first showed that BaTiO₃ could be changed to relaxor-type material by the addition of Bi₄Ti₃O₁₂. It is still not well-understood why relaxor-type behavior appears in some materials, but this phenomenon is probably closely associated with the so-called diffuse phase transition. The solid solution of Bi₄Ti₃O₁₂ into BaTiO₃ may cause the substitution of Ba²⁺ by Bi³⁺ associated with the formation of oxygen vacancies. This may introduce significant disordering in BaTiO₃ resulting in diffuse phase transition. Further study is needed to understand the mechanism of relaxortype behavior. Such relaxor-type behavior has also been obtained for other non-stoichiometric perovskites derived from BaTiO₃. 14, 15) Figure 8 shows the temperature dependence of the electrical conductivity (σ) for $BaTiO_3$ with the addition of $Bi_4Ti_3O_{12}$. The activation energy $(93\,\mathrm{kJmol^{-1}})$ and σ values for undoped $BaTiO_3$ shown in Fig. 8 are almost in agreement with values reported in the literature. The effect of the addition of $Bi_4Ti_3O_{12}$ to $BaTiO_3$ on the electrical conductivity has not been reported in the past. In the present study, the σ values decreased with increasing $Bi_4Ti_3O_{12}$ content. The activation energy slightly increased from 93 to 134 kJmol $^{-1}$ with increasing $Bi_4Ti_3O_{12}$ content from 0 to 10 mol%. It is known that $BaTiO_3$ is usually a p-type semiconductor. The trivalent substitution of Ba^{2+} by Bi^{3+} may have caused the electron Fig. 7 Temperature dependence of permittivity of BaTiO $_3$ with $4\,\text{mol}\%$ Bi $_4\text{Ti}_3\text{O}_{12}$ at $100\,\text{Hz}$ to $100\,\text{kHz}$. Fig. 8 Temperature dependence of electrical conductivity of $BaTiO_3$ with the addition of $Bi_4Ti_3O_{12}$. BT: $BaTiO_3$, BiT: $Bi_4Ti_3O_{12}$. formation. This may compensate the intrinsic p-type carrier in BaTiO₃, resulting in a decrease in electrical conductivity. ### 4. Conclusions A phase relationship of the $BaO-Bi_2O_3-TiO_2$ ternary system at 1273 K was proposed, and the electrical properties of $BaTiO_3$ with the addition of $Bi_4Ti_3O_{12}$ were measured. (1) A new compound of $BaBi_6Ti_{20}O_{50}$ was found. The lattice parameters were a=1.073 nm, b=0.381 nm, - $c_1 = 0.336 \,\text{nm}, c_2 = 0.529 \,\text{nm} \text{ and } \beta = 92.5^{\circ}.$ - (2) The solid solution of $Bi_4Ti_3O_{12}$ into $BaTiO_3$ was observed in the range up to 4 mol% of $Bi_4Ti_3O_{12}$. The structure of $BaTiO_3$ was tetragonal at less than 4 mol% $Bi_4Ti_3O_{12}$, and was cubic at more than $4 \text{ mol}\%Bi_4Ti_3O_{12}$. - (3) With increasing $Bi_4Ti_3O_{12}$ content, the temperature dependence of permittivity became broader and the highest permittivity values decreased. The temperature at the highest permittivity was also lowered with increasing $Bi_4Ti_3O_{12}$ content. - (4) A relaxor-like frequency dependence of permittivity was observed for the BaTiO₃ with 4 to 5 mol% Bi₄Ti₃O₁₂. - (5) The electrical conductivity of $BaTiO_3$ was decreased with increasing $Bi_4Ti_3O_{12}$ content. #### REFERENCES - 1) Walter J. Merz: Phys. Rev. 76 (1949) 1221-1225. - G. Arlt, D. Hennings and G. de With: J. Appl. Phys. 58 (1985) 1619–1625. - 3) N. Hirose and A. R. West: J. Am. Ceram. Soc. 79 (1996) 1633–1641. - 4) G. Shirane and K. Suzuki: J. Phys. Soc. Japan 6 (1951) 274-278. - 5) S. Nomura and S. Sawada: J. Phys. Soc. Japan 6 (1951) 36-39. - 6) Z. Yu, R. Guo and A. S. Bhalla: J. Appl. Phys. 88 (2000) 410-415. - J.-C. M'Peko, L. Cepero, J. Portelles, F. Calderon and G. Rodriguez: J. Mater. Sci. Lett. 15 (1996) 1164–1166. - N. Yamaoka, M. Fukui and H. Nakamura: Japan. J. Appl. Phys. 20 (1981) 139–142. - 9) B. Aurivillius and P. H. Fang: Phys. Rev. 126 (1962) 893-896. - G. N. Subbanna, T. N. Guru Row and C. N. R. Rao: J. Solid State Chem. 86 (1990) 206–211. - 11) A. Janner and T. Janssen: Acta Cryst. A 36 (1980) 399-408. - T. Akashi, K. Morita, T. Hirai, H. Yamane, M. Shimada and T. Goto: To be submitted. - F. D. Morrison, D. C. Sinclair and A. R. West: J. Appl. Phys. 86 (1999) 6355–6366. - 14) J. Ravez and A. Simon: Phys. Status Solid (a) 178 (2000) 793-797. - 15) J. Ravez and A. Simon: Solid State Science 2 (2000) 525-529.