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Phase Relationship in a BaO-Bi,03;-TiO, System and Electrical Properties of

BaTiO; with Addition of Bi;Tiz; O,

Takaya Akashi', Kouji Morita!, Toshio Hirai!, Hisanori Yamane? and Takashi Goto!

Unstitute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

A phase relationship of the BaO-Bi;O3-TiO; system at 1273 K was studied using a solid state reaction. A new compound of
BaBigTizOs0 was found in this ternary system. In the BaTiO3-BigTizO12 pseudo-binary system, the solid solution of BigTi3Oj2 into BaTiO3
was observed up to 4mol% BisgTizO12. The lattice parameters of tetragonal BaTiO3 varied depending on BigTizO;2 content in the solid
solution range. The structure of BaTiO3; became cubic with the addition of more than 4 mol% BisTizO;;. The temperature dependence of
permittivity obeyed the Curie-Weiss-like behavior in the solid solution range. The highest permittivity of BaTiO3 decreased and the peak of

permittivity became broader with increasing Bis Ti3O12 content.
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1. Introduction

BaTiO; is a well-known ferroelectric material,!™® which
is widely applied in various devices in the electroceramic in-
dustry. However, the sharp increase in its permittivity at the
Curie temperature is a serious obstacle to its application in
capacitors. To solve this problem, the doping of BaTiO3; with
several elements has been conducted to modify the tempera-
ture dependence of permittivity. For example, the Curie tem-
perature shifted to lower temperatures with SrTiO3; doping.¥
On the other hand, the Curie temperature shifted to higher
temperatures with PbTiO; doping.*> With ZrO, doping, the
Curie temperature shifted to lower temperatures and a broad
temperature dependence around the Curie temperature was at-
tained.®

There have been a few reports on the doping of BaTiO;
with BisTiz01,.”® However, the solubility range of BaTiOs
with BisTi3; Oy, and the effect of the addition of BisTiz O, to
BaTiO; on the dielectric properties of BaTiO3 are not under-
stood. In this study, we constructed a phase diagram of the
BaO-Bi;0;3-TiO, ternary system at 1273 K and investigated
the effect of the addition of BisTizO;, on the electrical prop-
erties of BaTiOs.

2. Experimental Procedures

BaCOs;, Bi;03 and TiO, (purity: 99.9%) were mixed with
a small amount of ethanol in an agate mortar. The mixed
powder was calcined at 973 K for 12 h. The calcined powders
were pressed into disk-shaped pellets and sintered at 1273 K
for 12 h. The crystal structure was examined by powder X-ray
diffraction (XRD) and a precession camera. The composi-
tions of the specimens were determined by induction plasma
spectroscopy (ICP).

To obtain dense specimens for dielectric measurements,
disk-shaped pellets were sintered at 1373 to 1623 K for 24 h.
The permittivity and the electrical conductivity were mea-
sured by an a.c. impedance analyzer (Solartron 1260, 1296) at
temperatures from 293 to 1133 K in air in the frequency range

between 0.1 Hz and 10 MHz.
3. Results and Discussions

Figure 1 shows the phase relationship of the BaO-Bi,O3-
TiO, systems at 1273 K obtained in the present study. We
examined the phases of about 80 compositions as indicated
in Flg 1. BazTiO4, BaTiO3, Ba4Ti13030 and BaTi409 in
the BaO-TiO, pseudo-binary system have already been re-
ported. In the Bi,O3-~TiO, pseudo-binary system, BisTi3O;»
and Bi,Ti4O;; have been identified. In the BaO-Bi,03-TiO;
pseudo-ternary system, BaBisTi4O;s has been confirmed.
Aurivillius ef al.”) synthesized Ba;BisTisO;3 by cooling the
melt at 1427 K. Subbanna et al.'” prepared BaBigTi;O,7 by
heating a mixture of BaCO3, Bi; O3 and Cr, O3 between 1200
and 1300 K. In the present study, the phases of Ba;Bi4TisOg
and BaBigTi;O,; were not observed at 1273 K.
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Fig. 1 Phase relationship in the BaO-BirO3-TiO, system at 1273 K.
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Fig. 2 X-ray diffraction pattern of BaBigTiz0Os0.
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Fig. 3 Variation of lattice parameters of BaTiO; with the addition of
BisTizOq2.

A new compound of BaBigTiyOsy was found in the
Ba0O-Bi;03-TiO, ternary system. The single crystal of
the new compound was synthesized by cooling the melted
BaBigTizgOs9. The new compound had a modulated struc-
ture') having a main lattice structure and a sublattice struc-
ture. The space group of the main lattice structure was not
precisely determined (either 12, Im or I2/m), but the lattice pa-
rameters were determinedtobe g = 1.073nm, b = 0.381 nm,
¢; = 0.336nm and 8 = 92.5°. The space group of the sub-
lattice structure was P2;/a, and the lattice parameters of a, b
and B were the same as those of main lattice, but the lattice
parameter ¢; = 0.529 nm. Figure 2 shows the XRD pattern of
the new compound. Each XRD peak in Fig. 2 was completely
indexed by calculation (hklm) using those lattice parameters.
A detailed structural analysis of this new compound will be
reported elsewhere.!?

Figure 3 shows the variation of lattice parameters
of BaTiO; with the addition of BisTizOq;. In the
BaTiO3-BisTi30q, pseudo-binary system, BaTiO; had a
tetragonal structure having lattice parameters a and ¢ in the
range of BiyTi3Oy, content between 0 and 4mol%. The
tetragonality of BaTiO3; decreased with increasing BasTi304,
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Fig. 4 Temperature dependence of permittivity of BaTiOs with the addi-
tion of BigTi3Oy2 at 10* to 10% Hz. BT: BaTiO3, BiT: BigTi3O1a.

content. The structure of BaTiO3 became cubic at more than
4mol% BisTizO1;. Therefore, the solubility of BisTi3Oy, in
BaTiO3 was estimated to be 4 mol%.

Figure 4 shows the temperature dependence of the permit-
tivity of BaTiO3 with the addition of BiyTi; O, at 10* to 10°
Hz. The value of permittivity and the Curie temperature of
undoped BaTiO; were in agreement with the reported val-
ues.!™ As shown in Fig. 4, the temperature at the highest per-
mittivity (Tax) shifted to lower temperatures with increasing
BiyTi3O55 content. Three peaks of the temperature depen-
dence of permittivity were observed for BaTiO3 correspond-
ing to the three phase transition of BaTiO3." (i.e., cubic to
tetragonal to orthorhombic with decreasing temperature). In
BaTiO; with BisTi3O1o, on the other hand, one broad peak
was observed to become broader and lower with increasing
BisTizO;, content. M’Peko et al.” have reported the temper-
ature dependence of permittivity of BaTiOs; with BisTi3O1n
in the range between 1 and 4 mol% BisTi3O1,. They reported
that the Curie temperature of BaTiO3; was unchanged by the
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addition of BigTi3O1,. The different results between the study
by M’Peko et al. and the present study may be due to the sin-
tering times of M’Peko et al. being too short (1.9 ks) to obtain
stable and homogeneous specimens. Figure 5 shows the rela-
tion between the reciprocal permittivity and temperature for
BaTiO; with the addition of BisTizO;, at temperatures above
Tmax- The experimental data for BaTiO; obeyed the Curie-
Weiss law. For BaTiO3; with less than 4 mol% BisTi3Oy5, the
relationship between reciprocal permittivity and temperature
was almost linear, exhibiting Curie-Weiss-like behavior. For
BaTiO; with more than 4 mol% BisTizO1,, the behavior de-
viated from the Curie-Weiss law significantly.

Figure 6 depicts the effect of the addition of BisTi3Oy; to
BaTiO3z on T« and &max, Where Tpax is the temperature at
the peak permittivity shown in Fig. 4 and en,x is the high-
est permittivity at Tyyax. The emax decreased with increasing
BisTi3Oq, content. The T« showed the minimum at around
4 to 5 mol% addition of BisTi3O;,. The second phase which
appeared in the samples with more than 4 mol% BisTizOq,
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Fig. 5 Temperature dependence of the reciprocal permittivity of BaTiO3
with the addition of BigTi3O12. BT: BaTiOs, BiT: BisTi3O1;.
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Fig. 6 Effect of the addition of BigTizO1y to BaTiO3 on Tpax and emax.
Tmax: the temperature at the peak permittivity shown in Fig. 4. spax: the
highest permittivity at Tinax-
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was BaBiysTiyO1s5, whose Curie temperature and highest per-
mittivity were 700 K and 3000, respectively. The reason for
the slight increase of T for the sample with more than
5mol% BisTizO0y; may be the high Curie temperature of
BaBi4TisO45 phase.

Figure 7 shows the temperature dependence of permittivity
for the samples with 4 mol% BisTizO;, at frequencies from
100Hz to 100kHz. The &yax increased and Ty, decreased
with increasing frequency. This relaxor-type behavior was
observed for the sample with 4 to 5 mol% BisTi3O;,. Several
researchers reported that BaTiOs could be changed to relaxor-
type materials by substitution of aliovalent elements.%!?
However, the present study first showed that BaTiOs could be
changed to relaxor-type material by the addition of Bis Ti3Oy5.
It is still not well-understood why relaxor-type behavior ap-
pears in some materials, but this phenomenon is probably
closely associated with the so-called diffuse phase transition.
The solid solution of BisTi3O;, into BaTiO; may cause the
substitution of Ba>" by Bi** associated with the formation
of oxygen vacancies. This may introduce significant disor-
dering in BaTiOj; resulting in diffuse phase transition. Fur-
ther study is needed to understand the mechanism of relaxor-
type behavior. Such relaxor-type behavior has also been ob-
tained for other non-stoichiometric perovskites derived from
BaTiQ;.141

Figure 8 shows the temperature dependence of the elec-
trical conductivity (o) for BaTiO; with the addition of
Bi4Ti3012. The activation energy (93 kJmol~!) and o values
for undoped BaTiO; shown in Fig. 8 are almost in agreement
with values reported in the literature.” The effect of the ad-
dition of BisTizO1, to BaTiO; on the electrical conductivity
has not been reported in the past. In the present study, the o
values decreased with increasing BisTi3O;, content. The acti-
vation energy slightly increased from 93 to 134 kJmol ! with
increasing BisTi3Oy, content from 0 to 10 mol%. It is known
that BaTiOs is usually a p-type semiconductor. The trivalent
substitution of Ba?>* by Bi** may have caused the electron
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Fig. 7 Temperature dependence of permittivity of BaTiO3 with 4 mol%
BiyTiz 017 at 100 Hz to 100 kHz.
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Fig. 8 Temperature dependence of electrical conductivity of BaTiOz with
the addition of Bis Ti3O15. BT: BaTiO3, BiT: BigTi3O1».

formation. This may compensate the intrinsic p-type carrier
in BaTiOs, resulting in a decrease in electrical conductivity.

4. Conclusions

A phase relationship of the BaO-Bi,03;-TiO, ternary sys-
tem at 1273 K was proposed, and the electrical properties of
BaTiO3 with the addition of BisTizQ1, were measured.

(1) A new compound of BaBigTiy0Oso was found. The
lattice parameters were a = 1.073nm, b = 0.381nm,
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¢1 = 0.336n0m, ¢, = 0.529 nm and 8 = 92.5°.

(2) The solid solution of Bi;Tiz O, into BaTiO3 was ob-
served in the range up to 4 mol% of BisTizO1,. The structure
of BaTiOs; was tetragonal at less than 4 mol% Bi4Ti3 O, and
was cubic at more than 4 mol%BisTizO1,.

(3) With increasing BisTisO;, content, the temperature
dependence of permittivity became broader and the highest
permittivity values decreased. The temperature at the high-
est permittivity was also lowered with increasing BisTi3O12
content.

(4) A relaxor-like frequency dependence of permittivity
was observed for the BaTiOs; with 4 to 5 mol% BisTi3O;5.

(5) The electrical conductivity of BaTiO3 was decreased
with increasing Bis TizO1, content.
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