Materials Transactions, Vol. 42, No. 12 (2001) pp. 2630 to 2636
(©2001 The Japan Institute of Metals

A Model for the Prediction of Reaction Diffusion Paths in Multicomponent Systems

with Limited Solubility
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A numerical method to compute the reaction diffusion process in multicomponent systems exhibiting limited solubility in their compounds
has been developed. The method combines a description of local thermodynamic equilibrium at the moving interfaces with a phenomenological
description of the diffusion process in every phase, taking their specific solubility features into account. There is no formal restrictions on the
number of components or phases. The algorithm software can be used for the systematic study of the influence of different system variables
such as free energies of formation and mobilities on the stable diffusion path, as well as for the prediction of the actual diffusion path in
technologically important contacts. As an example calculations in a hypothetical ternary system are shown.
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1. Introduction

In technological applications contacts between chemically
incompatible materials are often encountered. Examples are
mutual contacts between metals, semiconductors and insu-
lators in electronic devices,'™ or combinations of a variety
of materials in composite structures.*® If no thermodynamic
equilibrium prevails in the initial contact, a combination of
chemical reactions and mutual diffusion usually leads to the
build-up of a sequence of new phases. In many cases, the
homogeneity range of the compounds involved is small. The
knowledge of the final phase sequence, which can be repre-
sented by a diffusion path on the isothermal section in the
corresponding phase diagram, is of crucial importance for the
evaluation of the material combination’s applicability.

If the contacted materials belong to a binary system, the
stable diffusion path can be directly deduced from the isother-
mal section of the corresponding phase diagram. However,
for higher order systems this is not the case.” Out of the infi-
nite number of plausible diffusion paths, only one is stable.®)
The stable phase sequence is dictated by the thermodynamic
as well as the kinetic properties of the phases involved. Up
to now, a general theoretical method to calculate the stable
phase sequence is not known. The available empirical meth-
ods for predicting stable diffusion paths, like the method of
Van Loo et al.,” are only applicable to specific cases. As
a consequence, a systematic experimental verification of the
chemical interactions in the contact is still necessary.

The numerical treatment of diffusion phenomena in multi-
component alloys is rather well established.'? Software tools,
such as DICTRA,!V can be used for the numerical simulation
of boundary movement and the calculation of concentration
profiles. The simulations are based on the solution of mass
flux equations
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where J; is the mass flux of component i in g-atm~2s™!. D;;
is a so-called intrinsic diffusion coefficient and C; is the con-
centration of component j in g-atm™>. The diffusion coeffi-
cients contain partial derivatives of the chemical potentials
with respect to the concentrations (see e.g.'?). For nearly
stoichiometric compounds, the multiplication of a very low
concentration gradient (VC;) with an accordingly high value
for these partial derivatives creates a numerically unstable sit-
uation. Therefore, the presently available numerical treat-
ments of diffusion problems are not suitable for the systems
discussed in this paper. Moreover, the concentration depen-
dence of the chemical potentials remains unknown for most of
these compounds, due to difficulties in thermodynamic mod-
elling.’® Therefore, the real driving force for diffusion, which
is the gradient of the chemical potential, should be used for
compounds with limited solubility instead of the concentra-
tion gradient.

Recently Lee'® has developed a simulation software for
multicomponent and multi-layered phase diffusion. His
method is also based on the calculation of concentration pro-
files and the formation of a new phase at an interface is de-
duced from the evaluation of the highest driving force of for-
mation, a concept which is also used in prediction of the first
reaction compound in thin film systems.!>

In this study, a calculation method is presented for the pre-
diction of stable diffusion paths in multicomponent systems.
The method is valid when

e the homogeneity range of the phases involved is re-

stricted to a few at%,

o the process is diffusion controlled; thermodynamic equi-

librium is established locally at the interfaces

e the thickness of the contacted materials is large enough

to exclude specific thin-film effects and the interfaces
exhibit planar morphology,

e and single phase fields occur in the stable diffusion

paths.

The method nevertheless can be used to study reaction dif-
fusion processes in systems of practical importance'® and
allows to predict precipitation or the appearance of a peri-
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Fig. 1 Isothermal section of a hypothetical A-B-C system. Several diffu-
sion paths can be considered belonging to the A|B,C contact. They can be
represented on the isothermal section as a series of tie-lines connecting A
with BoC.

1

W+ i

p—1
THi

— z P P

z

Fig. 2 Schematic representation of the modelled reaction diffusion process
in a contact between two materials that belong to a ¢ component system
(i =1,2,- - c¢),resulting in a sequence of p phases and (p — 1) corre-
sponding interfaces.

odic phase structure.!” Here the calculation method is ap-
plied to a contact A|B,C in the hypothetical A-B-C system,
an isothermal section of which is represented in Fig. 1. Sev-
eral diffusion paths can be considered, like e.g. the paths
A|AB|BC;|B,C and A|BC,|AB|B,C. It will be shown that
the stable diffusion path may be calculated when certain ther-
modynamic and kinetic parameters are known or can be esti-
mated.’

2. Flux Equations

Figure 2 is a schematic representation of the reaction diffu-
sion process and the variables used in its modelling. The orig-
inal contact is made between the end phases @' and ¢? that
belong to a c-component system. During reaction diffusion a
sequence of p phases ¢/ (j = 1, 2, --- p) is formed, leading
to (p — 1) planar interfaces. The position of each interface j
(j =1,2,-.- p—1)is characterised by its coordinate 7.
The chemical potentials ] define the thermodynamic prop-
erties of the components i (i = 1, 2, - -- ¢) at each interface
J(.]Zlv 27 "'p_l)'

In each phase, an expression for the flux is needed for ev-
ery component. The same nomenclature as in Fig. 2 will be
used throughout the text: subscripts refer to components, su-
perscripts to phases or the interfaces between them.
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2.1 Flux equations in the Kirkendall reference frame
Onsager'® has derived a general phenomenological equa-
tion

c
B =3 Livu) (=1,2,--¢j=1,2---p)
k=1

@

that relates the mass fluxes in an isothermal isobaric system to
the gradients of the chemical potentials, which are the driving
forces for diffusion. The L;; are the so-called phenomenolog-
ical coefficients. In non-ionic systems, this equation may be
simplified (see e.g.'?) if the fluxes are expressed in the Kirk-
endall reference frame, which is attached to a fixed lattice site,
so that

Tk = —(LHxvu! 3)
with
) N Ve
Wk =mic) = =+ @

M denoting the mobility of the component in m g-at (N's)~1,
x its mole fraction and V the molar volume in the speci-
fied phase in m> (g-at)~!, which is assumed to be equal for
all components in a phase by the model. In ionic systems,
interaction coefficients L;; (i # k) arise through the corre-
lated movement of charged species in order to preserve elec-
troneutrality, as shown by Kirkaldy et al.'¥ Even in non-
ionic systems, eq. (3) is not entirely correct. Manning!®2%
demonstrated that cross-effects also occur due to the corre-
lated movement of vacancies through the lattice. From a
practical point of view of predicting diffusion paths, we can
neglect these effects and still calculate accurate results com-
pared to experimental reproducibility.'?

Equation (3) can be applied for expressing the fluxes in the
intermediate phases ¢/ (j = 2, 3, --- p — 1). In the case
of nearly stoichiometric compounds (C; and x; practically
constant), it follows from Fick’s second law that

ac/
ot
Therefore, the flux of each component can be assumed to be

constant within each intermediate phase. Using an averaged
mobility, defined as

=-VJ/ ~0. )

J
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My — K
eq. (3) may be rearranged to
N = —(L7. ! = —(L))g=2t—"—
(J)x = =Lk 2z |, Lk P

The fluxes in the intermediate phases can thus be described as
a function of the position and the respective chemical poten-
tials at the interfaces.

Equation (7) is not applicable to the end phases ¢! and ¢?,
since they are only bounded by one interface in the contact.
Hence, another approach should be used for expressing the
fluxes. Considering that their layer thickness is substantial
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in bulk diffusion couples, diffusion in the end phases can be
assumed to behave as in a half-infinite diffusion couple. Fur-
ther assuming that the concentrations at the interface (1 and
p — 1) are kept constant, eq. (5) yields a differential equation
that can be solved analytically if the diffusion coefficients are
constant. This is the case in composition regions where the
activity of component i is linear with respect to its mole frac-
tion, i.e. for Henrian or Raoultian behaviour. For a solution
Ref. 21) may be consulted. Expressions for the fluxes in the
end phases ¢! and ¢?, valid at the interfaces 1 and (p — 1)
can also be derived:?!

MIRT 1
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where the mole fractions at infinity are equal to O for minority
elements (e.g. for a phase AB in the system A-B-C, C would
be a minority element) in the end phase, or equal to 1 when
the end phase is a pure component.

A similar solution procedure can be developed for the
case where Henrian or Raoultian behaviour is not observed
0 < xiJ < 1) (see Appendix A). The resulting flux equations
then are

1 1

Uk =1 == Vl( C% =) (10)
MP xP
U =\ o 5 Wl = 1) (11)

where the chemical potentials at infinity correspond to the
state of i in the ‘pure’ end material. The determination of
their values is discussed in Section 4 of this paper. Equa-
tions (10) and (11) are again only valid at the interfaces 1 and

(p—1.

2.2 Recalculation of the flux equations to a general fixed
reference frame

Relations (7), (8) to (11) define all fluxes (see Fig. 2) as ex-
pressed in the Kirkendall reference frame. As the position
and movement of this frame depend on the relative values
of the respective mobilities, a different Kirkendall reference
frame generally exists in every participating phase. As a con-
sequence, a recalculation to a general fixed reference frame
is needed, in order to relate fluxes in different phases with
one another. The first step in the recalculation involves the
expression of the flux equations in a volume-fixed reference
frame, which, contrary to the Kirkendall reference frame, can
be defined on a macroscopic level. In the case of equal partial
molar volumes of all components within a phase, this frame
is equal to the number-fixed reference frame, and is defined

by
Y (Fv=0

i

12)

in each phase j. Appropriate recalculation formulae that re-
late the fluxes in the volume-fixed frame to the fluxes in the
Kirkendall reference frame are available in literature (see for
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example!?). The general relation is

c
v =Y G — DTk (13)
k=1
where §;; denotes the Kronecker-delta. The recalculation
of the fluxes induces cross-effects that give rise to cross-
coefficients Lj; in eq. (2).

Still, if the phases occurring in the reaction diffusion pro-
cess have different integral molar volumes, each of them will
have its own volume-fixed reference frame. Therefore the to-
tal volume of the diffusion couple usually alters during the
reaction diffusion process: the sample expands or shrinks.??
The difference in integral molar volumes induces a bulk ve-
locity vy, in each phase j. The bulk velocities of neighbouring
phases can be related through mass balance requirements at
the interface between them:

1 0 1 1 1) az/
yiete Ty T\ v T Vi) B

G=12---p=D.

(14)

In our model, a general fixed reference frame is arbitrar-
ily chosen to be attached to the left edge of the contact, as
indicated in Fig. 2. A recalculation of the fluxes between
the volume-fixed reference frame and the general (laboratory-
fixed) reference frame ‘L’ is now possible by making use
of the bulk velocities. These can be obtained for all phases
through eq. (14), knowing that v} is equal to zero in the
presently chosen frame. The resulting relation is

i J x
(J,' L= (J, v+ WUB
After recalculating the fluxes in eqns. (7), and (8) to (11) by
means of (13) and (15), new flux expressions are obtained
having the same reference frame. The total number of vari-
ables in these expressions is (¢ + 1)(p — 1), consisting of
(p — 1) interface co-ordinates and c¢(p — 1) chemical poten-
tials. The remaining quantities in the flux equations can be
regarded as parameters (cfr. Section 4).

(15)

3. Interface Conditions

Two types of relations exist between the (¢ + 1)(p — 1)
variables at the interfaces. Local thermodynamic equilibrium
imposes a set of (p — 1) double conditions on the chemical
potentials, one at either side of each interface:

Zx
c
+1
St

i=1

= AGS(¢)

=AGY (™) (=1,2,---p—1) (16

where AG(} denotes the Gibbs energy of formation of the
specified phase, using the same reference states as for the cor-
responding chemical potentials.

As for the relation between the bulk velocities in
Section 2.2, the mass balance requirement additionally
applies for the individual fluxes at both sides of every in-
terface. Therefore, the fluxes have to be expressed in the
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same reference frame, being the general fixed frame defined
by eq. (15). Conservation of mass yields the following set of
relations

(Ji]+1)L — (JZ'J)L — (Cl:’+1 _ Clj)a_zt
(i=1,2,'--C—l;j:1,2,-~-p——l)

a7

Only (¢ — 1) independent relations of this type exist at ev-
ery interface, since the fluxes within each phase are interre-
lated through eq. (13). Expressions (16) and (17) define a set
of (c+1)(p—1) equations in (c+ 1)(p — 1) variables, thus al-
lowing the calculation of a solution for the presently modelled
problem.

4. Parameters

“Values for the parameters that occur in the equations (the
Gibbs energy of formation, the molar volume and the com-
position of each phase, the chemical potentials of the com-
ponents forming the pure compounds in the end phases, and
the mobilities of the elements in every phase) are required to
solve the equations.

Data regarding the Gibbs energies of formation of the com-
pounds are required for the calculation of the isothermal sec-
tion and to calculate local thermodynamic equilibrium at ev-
ery interface. If available, literature values can be used. If not,
a set of consistent Gibbs energies can be obtained by thermo-
dynamic optimisation of the system using the Calphad ap-
proach.!32? Since the systems which are studied in this work
exhibit limited solubility, simple temperature dependent ex-
pressions can be adopted for the Gibbs energy of formation,'

AGY(¢’) = A7+ BT. (18)

If solubility is neglected, an isothermal section in a c-
component system is completely filled with c-phase equilib-
ria, as illustrated in Fig. 1. This feature considerably sim-
plifies the calculation of isothermal sections. A new algo-
rithm for the calculation of isothermal sections of any com-
plexity, if the solubility is neglected, has been proposed.?¥)
The need for accurate Gibbs energy descriptions is twofold.
Firstly, they are used in the calculation of isothermal sections,
which reveal the plausible diffusion paths connecting the end
phases in the contact. Referring to the isothermal section in
Fig. 1, nine theoretical diffusion paths can be defined for the
A|B,C contact, involving three to six phases (e.g. A|AB|B,C,
AJAB|BC;|B,C or A|C|BC;,|AB|B|B,C).

Secondly, the optimised Gibbs energy values are used in
the reaction diffusion model to express the conditions of local
thermodynamic equilibrium at the interfaces.

For most of the compounds, approximate molar volumes
can be calculated using crystallographic data on the dimen-
sions of the unit cell at room temperature.? If no such data
are available, usually an estimation can be made based on the
molar volumes of the pure components or those of the com-
pounds having the nearest stoichiometry.

Concerning the composition of the phases, distinction must
be made between the thermodynamic and the kinetic calcu-
lations. While expressing thermodynamic equilibrium as in
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eq. (16), the mole fractions corresponding to the pure com-
pounds can be directly used, since the Gibbs energy values
in the equation refer as well to the pure state. In the cal-
culation of the diffusion process, however, the fluxes of mi-
nority elements can play an important role and should be in-
cluded. Therefore their mole fractions should be known in
the eqns. (7), (8) and (9). In a steady-state situation, which is
the present case, it is assumed that the maximum solubility is
reached for each minority element in every phase. The mole
fractions of the other components are therefore recalculated
using the following approximation,

x! = x/(1 - Zx,g) (G=1,2---p) (19)
k

with k for the minority elements and i for the other compo-
nents. In the eqns. (10) and (11), the chemical potentials at
the outer edge of the end materials are needed. The com-
pounds are assumed to be pure at the edge, and the chemical
potentials are accordingly approximated by the average value
of the chemical potentials in all c-component phase equilib-
ria involving the compound in the isothermal section of the
phase diagram. Referring to Fig. 1, the chemical potentials of
A and B in pure AB are thus approximated by taking the aver-
age of the respective values in the equilibria A-AB-BC,, AB-
B,C-BC; and AB-B-B,C. Although this choice may seem
arbitrary, it corresponds to an average position in the stability
field of the phase.

In the case of multicomponent diffusion processes, very lit-
tle data on mobility are available. Therefore, an estimation of
the respective mobilities is usually required. As shown in an-
other paper,'® approximate mobility values can also be gener-
ated by simulating experimentally determined diffusion paths
by using the solution method.

5. Mathematical Solution

The solution of a general diffusion problem involves the
substitution of the flux eqns. (1) in the time-dependent mass
balance eqns. (5), leading to a set of differential eqns. that
require numerical solving. In the present paper, a steady-
state situation is calculated, having constant fluxes throughout
each phase and constant chemical potentials at the interfaces.
From the flux eqns. (7) and (8) to (11), as well as the mass
balance requirement (17), the classical time-dependence of
steady-state diffusive growth can be deduced, as

o~ (20)
i1
J)~ 7 21)

These relations lead to the possibility of eliminating ¢ in
eq. (17), hence replacing the differential by a plain term in
z/. As a consequence, the set of (¢ + 1)(p — 1) equations in
(c+1)(p—1) variables, as defined by the eqns. (16) and (17),
becomes free of differentials and partly non-linear.

Still, no general method exists that guarantees obtaining
one or more solutions for such a set of equations. How-
ever, since the present set contains several linear equations,
solutions can be obtained rather easily. In this study, the
Newton-Raphson iteration technique for solving a set of non-
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linear equations has been applied.?> The convergence of this
method is highly dependent on the starting values for the un-
known variables. Therefore, a simplified linear version of
the set of egns. (16) and (17) is used to generate a suitable
set of starting values. In this approach, the mass balance re-
quirement is approximated by considering the global chemi-
cal reaction in the contact. Referring to Fig. 1, starting values
for interface velocities in the phase sequence A|AB|BC;|B,C
would thus be generated that reproduce the relative volume
changes, dictated by the global chemical reaction

3A + 2B,C <> 3AB + BC,. (22)

Based on these values, a series of appropriate starting sets
is constructed in order to find all solutions.

6. Stability Criteria

The set of non-linear equations discussed above usually
leads to multiple solutions. Moreover, solutions are calcu-
lated for each possible diffusion path according to the isother-
mal section. Hence, many mathematical solutions are ob-
tained for the unknowns. As discussed in the introduction,
only one of these will occur in practice. This stable solu-
tion has to meet certain requirements, which are twofold in
the steady-state situation. The first criterion is physical and
straightforward. A calculated solution is physically possible
if all phases, except the original starting materials, grow as a
function of time. Therefore, the criterion for physical feasi-
bility becomes

7N -7 >0 (=1,2,---p=2) (23)

with the co-ordinates expressed in the general fixed frame,
as indicated in Fig. 2. However, a solution that is physically
possible can still not occur in practice due to the chemical in-
stability of one or more interfaces. An interface is chemically
stable if the values of the chemical potentials lie in a range
where none of the phases, that form a stable phase equilibrium
in the isothermal section with those actually present at the in-
terface, are thermodynamically stable. As an example, the
interface BC,|AB can be considered in the A|BC;|AB|B,C
diffusion path on Fig. 1. If for instance the calculated chem-
ical potential of A at this interface is positive, pure A is ther-
modynamically stable and will ultimately form between BC,
and AB, hence altering the diffusion path. A similar reason-
ing applies for the possible stability of B,C. Mathematically,
the following condition must be fulfilled:

D oxkul < G4 (G =1,2,---p-1) (24
i=1

where k stand for all the values for which ¢* forms a stable
phase equilibrium with ¢/ and ¢/*!.

If both criteria (23) and (24) are satisfied, the stable dif-
fusion path has been obtained. Solutions that are physically
possible, but do not meet the second criterion, are still relevant
for the interpretation of the stable diffusion path. They can
indicate the occurrence of a precipitation if the same phase
becomes stable at two consecutive interfaces, or of a periodic
layered structure in the diffusion path, as is discussed in a
subsequent paper.!”

B. Hallemans, P. Wollants, J. R. Roos and B. Blanpain

Input contact AIB
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Initialisation, k=3

Extend list of diffusion paths
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I Calculate solutions |

One solution possible?
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Fig. 3 Flow chart of the general algorithm for the prediction of stable diffu-
sion paths in multicomponent systems with limited solubility. k and ¢ are
counters, respectively denoting the number of phases in the investigated
diffusion paths and the number of the actually investigated path.

7. Algorithm

The flow chart of the general algorithm for predicting stable
diffusion paths is given in Fig. 3. First, the thermodynamic
description of the system is set up by calculating the isother-
mal section, based on the optimised Gibbs energies of all sta-
ble phases as input parameters. The actual calculation of the
isothermal section is performed by a separate algorithm.?* If
the contacted materials are chemically incompatible, the dif-
fusion path calculation proceeds in a recursive way. Starting
with a k-value of three, the plausible diffusion paths irivolv-
ing k phases connecting both end materials are identified from
the isothermal section. For these diffusion paths, solutions
are calculated and evaluated using the new reaction diffusion
model. Several attempts are made for finding different solu-
tions. For each attempt.a different set of starting values is
used. If no stable solution is found, the list of diffusion paths
is renewed by extending the previously listed paths with one
more phase (k — k -+ 1). Calculations are repeated for the
new set of diffusion paths. The algorithm terminates if the
stable diffusion path has been found, or if no diffusion paths
involving a higher number of phases are left. The user may
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A AB BC, B.C
o(rel) -12.78 12.89 19.45
u(A) 0.000 -663 -1338
4#(B) -2000 -1337 -1000
4(C) -3476 -832 -1000
v(bulk) 0.000 0.000 0.000  0.000
J(A) 0.103 6.48 0.051  0.051
J(B) 0.051 -6.42 -8.57 -2.09
J(C) -0.051 -0.051 8.52 2.04

Fig. 4 Calculated stable diffusion path for the A|B,C contact in the A-B-C
system of Fig. 1. Input data are —10007 (g-at)~! for the Gibbs energy
of formation of every compound, 10~18 ms (N g-at)~! for every mobility
and 1075 m? (g-at)~! for all molar volumes. The maximum solubility of
all minority elements is 0.1 at%. The values for v are in 109/fms~!; for
w in J/mole and for J in 10~*/4/7 mole (m?-s) 1.

interrupt the calculations if he considers the number of phases
in the calculated paths to become too high.

8. Example

A typical output from the program is given in Fig. 4 for
the A|B,C contact in the system shown in Fig. 1. The output
consists of a schematic drawing of the stable phase sequence.
The interface velocities and the chemical potentials at the in-
terfaces are given, followed by the bulk velocity and the fluxes
in all phases, expressed in a general fixed reference frame that
is attached to the left edge of the contact. In this example the
bulk velocity is zero in every phase since it was assumed that
all phases have equal molar volumes.

Often the exact values of several parameters in a reaction
diffusion problem are unknown, and thus estimations have to
be made. It is therefore important to gain some insight into
the influence on the stable diffusion path of possible errors in
the estimated values. Especially for mobilities very few ex-
perimental data are available in multicomponent systems. It
is therefore useful to be able to analyse their influence on the
stability of a diffusion path. Such an analysis is possible using
the software. General trends can be deduced, providing im-
portant information for estimating unknown parameters. As
an example the trend is deduced for the influence of the mo-
bility values. While those of minority elements tend to influ-
ence the chemical stability at the interfaces, the main effect of
the mobilities of the other components consists in changing
the global rate of the reaction diffusion process. An example
is shown in Fig. 5, where the global rate is displayed for the
AJAB|BC,|B,C diffusion path of Fig. 4, as a function of the
mobilities in the AB and the BC; phases. The figure indicates
that the phase in which the mobilities have the lowest values
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Fig. 5 Global rate v(tot) of the reaction diffusion process, expressed as the
relative velocity difference between the BC,|B,C and the A|AB interface
of the A|AB|BC;|B,C diffusion path, shown in Fig. 5. The same input
data have been used, except for the relative mobilities in AB and BCy.
v(tot) is in 10724/ ms~1, M in 10~ ¥ ms (N g-at)~L.

is rate determining for the process.
9. Summary

A method has been developed for the reaction diffusion
process in multicomponent systems exhibiting limited solu-
bility. There are no limitations on the number of components
and phases. It has been shown that appropriate flux equa-
tions can be derived for the intermediate as well as for the
end phases. Specific use has been made of the limited solu-
bility feature. After a recalculation of the flux equations for
every phase to a general fixed reference frame, the resulting
expressions can be compared quantitatively. A set of equa-
tions has been formulated, involving the fluxes using the con-
ditions for local thermodynamic equilibrium and conservation
of mass at every interface. The number of equations is equal
to the number of unknowns, being the co-ordinates and the
respective chemical potentials at each interface. A number of
parameters appears in these equations, the determination of
which has been discussed. For the thermodynamic descrip-
tion, the existing formalism for expressing the Gibbs energy
in systems with limited solubility has been adopted. A new al-
gorithm for the calculation of isothermal sections for systems
with an unlimited number of components has been used. The
set of non-linear equations can be solved using the Newton-
Raphson technique. Good starting values for the unknowns
are obtained by solving a simplified linear version of the equa-
tions. Out of a multitude of numerically possible solutions,
the stable solution is isolated by the application of two stabil-
ity criteria. Only one of the calculated solutions meets both
criteria, and hence represents the stable diffusion path.

The applicability of the method was illustrated for a con-
tact in a hypothetical ternary system. It was also shown that
the method may be used to study general features of the reac-
tion diffusion process. This is useful as often the exact values
of several parameters in a reaction diffusion problem are un-
known, and thus estimations have to be made. It is therefore
important to gain some insight into the influence on the sta-
ble diffusion path of possible errors in the estimated values.
Especially for mobilities very few experimental data are avail-
able in multicomponent systems. Such an analysis is possible
using the presently developed software as was shown in this
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Appendix

In composition regions where neither Raoult’s nor Henry’s
law apply, the diffusion coefficients are not constant. An ap-
proximate analytical solution can then be obtained by intro-
ducing the basic diffusion eq. (3) in Fick’s second eq. (5) in
the Kirkendall reference frame, yielding

aC; d i
Dl L,-,-EM— .
ar 9z dz

Using eq. (4) to replace L;;, and assuming M, as well as
C; not dependent on z, the foregoing expression can again be
simplified,

(A-1)

0C; %,
—mc, B
ot az2
In order to solve this equation, C; on the left hand side
should be transformed into w; using the relationship

C = < exp (ﬁt—) .
Vi RT
The dependence of the activity coefficient y; on ¢ may be
neglected since we are dealing with a virtually constant con-
centration, so that the following differential equation is ob-
tained:

(A2)

(A-3)

s 02u;
R
ot 972

The solution of this diffusion equation is:

(A-4)

s
2J/M;RTt
(A5)

Mﬂat)=uf+%u?—M?)P——@(

(]:l?p’kzlﬁp_l)

where © is the error function.

Equations (10) and (11) are deduced from the above ex-
pression. It may be emphasised that this solution is only valid
in the case of virtually negligible dependence of C; on z and
t, and of u; on ¢, which is the case for components forming
anearly stoichiometric compound. Moreover, the assumption
of a half-infinite phase is still made, requiring the effect of
diffusion at the edge of the end phase to be zero.



