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Velocity of Sound in Liquid Simple Metals near the Melting Point

Isao Yokoyama

Department of Applied Physics, National Defense Academy, Yokosuka 239-8686, Japan

In this paper we report comparisons between theoretical and experimental values of the velocity of sound in twenty liquid simple metals
near the melting point. We used three model theories, namely, (1) an improved Rosenfeld’s approach, (2) Ascarelli’s approach and (3) a
modified Ascarelli’s approach. For alkali metals, the three model theories give much the same predictions in the velocity of sound. For
polyvalent metals, electrons play an important role when the valency is increased. For noble metals, the degree of agreement between theory
and experiment is improved by taking into account the effects of the ionic core due to the s-d hybridization.
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1. Introduction

The velocity of sound is one of the most basic thermody-
namic properties. Nevertheless, only a few theoretical studies
have been made of this phenomenon since the pioneering
work of Ascarelli.)) Recently, however, Yokoyama® has mod-
ified the Rosenfeld formula® of the velocity of sound and suc-
cessfully explained the temperature dependence of the veloc-
ity of sound in liquid alkali metals up to quite high tempera-
tures. In the subsequent work Yokoyama® has shown that a
hard-sphere model immersed in a uniform background poten-
tial is capable of describing the velocity of sound in liquid 34
transition metals near the melting point. An interesting point
presented in Ref. 4) is that the effects caused by electrons
are relatively small but still important for yielding predictions
in good agreement with the experimental data. Therefore, it
seems necessary to perform a systematic study on the role of
electrons in any theory of the velocity of sound.

The purpose of the present paper is to investigate the ve-
locity of sound in liquid alkali, noble and polyvalent metals
by means of both an improved Rosenfeld’s approach and two
model] theories incorporating effects caused by the electrons,
and to report the effects caused by the electrons in the the-
ory of the velocity of sound. In the next section, we mention
the three model theories and approximations to be employed.
Results of the numerical calculations are presented and com-
pared with available experimental data in Section 3. Discus-
sion will be made regarding the effects of the ionic core due
to the s-d hybridization for noble metals in comparison with
observed data. Conclusions drawn from the present work will
be presented in the last section.

2. Model Theories

2.1 Improved Rosenfeld’s approach (hard-sphere model)
The velocity of sound, c, is defined by>?

Mc* = (3p/dp)s = (9p/dp)r + TL(dp/dT)vI*/(0*Cv/N),
09)
where M is the atomic mass, V the volume, T the absolute

temperature, N the total number of ions and p the number
density of ions. p and S, respectively, denote the pressure

and the entropy. Cy stands for the heat capacity at constant
volume which is purely kinetic, Cyv = (3/2) Nkg with kg be-
ing the Boltzmann constant, for a classical system of hard
spheres. Then the velocity of sound, ¢, is given by

¢ =s@E)"" kaT/M)'"7?, 2
where £ is the packing fraction defined by
£ =mnpo’le, ©))
and
sE)™Y = (p&) +EP' () + (2/3)(36p'(§)(@Ino/dIn Ty
+pENH “

In eq. (3), o is a hard-sphere diameter. p(£) and p’(§) are
given by the Carnahan-Starling expression® as

P =(0+E+8-5)/01-§), ®

and
p'€) =dp&)/ds =22 +26 —£0)/1 - 8" (6)

The temperature dependence of o is estimated by the use of
the empirical formula proposed by Protopapas et al.®:

o (T) = 1.120,[1 — 0.112(T/ Tn) /1, )

in which oy, is the value of o at the melting point, 7,. From
eq. (7),

@Ino/dInT)y = —(0.05600/c (T))(T/Tx)?, . (8)

in which oy is given by oy = 1.0878(0y,)~"/® with p,, being
the number density of ions at Ty, and o, = 0.888cy. As
explained in Ref. 7), we can extract the value of & through
eq. (9) of Ref. 8). The value of £ is 0.463 for liquid metals
near the melting point. With & = 0.463, as shown in Ref. 8),
we can account for the structural, thermodynamic, transport,
and surface properties of the liquid metals near the melting
point on the basis of a hard-sphere model.

2.2 Ascarelli’s approach

Ascarelli® used a model of hard spheres immersed in a uni-
form (without gradients) potential which provides the cohe-
sion that the hard-sphere gas otherwise lacks. This approach
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is supported by the well-known form of writing the total bind-
ing energy F (per atom) of a metal, which when calculated to
the second order in a perturbation scheme can be conveniently
separated into two terms®!?

NE=NEo+(1/2) ) V() )

i

where E is a quantity dependent on the volume of the sys-
tem but independent of the positions of the ions, and V(r) is
an effective pair interaction energy. As the structure of lig-
uid metals is largely determined by the short-range repulsive
forces, we approximate V (r) by a simple hard-sphere poten-
tial. The total binding energy E of a metal is completely de-
termined by Ej, which while supplying the cohesion to the
hard-sphere system, does not change the equilibrium config-
urations of the ions.

We now approximate Eg by the sum of two terms: the
kinetic energy of a free-electron gas, and a negative energy
term, —B/ V'/3, which contains the energy of the interaction
of valence electrons with the ion, and the energy of the inter-
action of valence electrons with themselves. B is a constant
to be determined by considering the pressure of the system to
be zero at the melting point. For simplicity in the following,
we write B in terms of a dimensionless constant A defined by

B = 3A(Vy) kg Ty (10)

We then write the pressure as?

pV/(NksT) = p/pksT = (2/5)(zEg/ksT)
— AV / V)V (kg T/ ks T) + pnV/NkgT,
(11)

where z is the number of valence electrons per atom(valency),
Vi is the volume at the melting point and Ef is the Fermi
energy. py is the pressure of the hard-sphere system, which
is well described by the Carnahan-Starling equation of states
given in eq. (5), namely,

PuV/NkgT = py/pksT = p(§)
=(1+&+8-8)/1-8° ()

Now assuming the total pressure pV/NkgT = 0O under nor-
mal conditions at the melting point in eq. (11), we find

A = pn/puksTm + 2/5) (2Er(Tm)/ ks Tm)
= +&n+&— 6/ —En)
+ (2/5)ZE(Tw)/ kp Tm),

where &, is the packing fraction at the melting point which
is 0.463 as mentioned in the previous subsection. A is a con-
stant which is independent of p and T in the following cal-
culations. We can then write, after a simple differentiation of
the pressure with respect to the volume and the temperature,

(dp/3p)1/ksT = (2/3)(zEp/ksT)
— (4/3)A(p/pm)" (ks T/ ks T)
+ p&) +&p'(),
(p/3T)v/pks = p(€) + 3&p'(€)(dIno /3 In T)y.

12)

3)
(14)
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In the derivation of eq. (13), we assumed (do/dp)r = 0
Then, substituting egs. (13) and (14) into eq. (1), we obtain

¢/(ksT/M)?* = [(2/3)(zEr/ksT)
— (4/3)A(p/pm)""* (ke T/ ks T)
+pE) +Ep'E) + 2/3){p®)
+3£p'(€)(31Ino /8 In T)v )12

There are four differences between Ascarelli’s original ap-
proach and the present approach, which are as follows:

(1) A different &, was used (Ascarelli used 0.45, while we
used 0.463),

(2) A different equation of states was used (Ascarelli used
Reiss et al.’sD but we used the Carnahan-Starling equa-
tion of states),

(3) The temperature dependence of o was differently treated
from Ascarelli,

(4) We did not assume that C,/Cy = 1.15 for all metals
employed by Ascarelli.

15)

2.3 Modified Ascarelli’s approach
The Helmholtz free energy of a liquid metal is assumed to
be written as'!*1?

F=FR+U(V,T), (16)

where Fg is the Helmholtz free energy of a model refer-
ence liquid capable of describing the structure-dependent part
of the system of interest and Ug(V, T) is a function of the
volume V and the absolute temperature 7' representing the
difference in the free energies of the reference and the real
liquid. If a hard-sphere model is employed as a reference lig-
uid, we may write from Shimoji'®

Fr = Fqg = NkgT[—In A% —In(1/p) + (3 — 28)
/(1 —§)* —4].

Here Fy denotes the Helmholtz free energy of a hard-sphere
liquid, and A is the thermal de Broglie wavelength. We used
the Carnahan-Starlingequation of states in eq. (17). The con-
tribution from the non-reference liquid part is given as

Ugn(V, T)/N = uey — (1.82°By) /a

a7

(18)

in'Ryd. Here 7 is the valency and a is the Wigner-Seitz ra-
dius given by a = (3/4mwp)'/3. In eq. (18), the first term
ueg stands for the electron-gas energy derived from kinetic,
exchange and correlation energies'®:

Ueg = 2.22°1 Ja* — 0.9162* /a

+2(0.031Inaz™"? — 0.115). (19)

The second term denotes the electrostatic energy in the point-
ion model and the coefficient By can be determined by the

zero-pressure condition at the melting point
p=—0@F/3V)r =0, (20)

as stated in Subsection 2.2. The explicit expression for By is
given as follows:



Velocity of Sound in Liquid Simple Metals near the Melting Point

By = (a(Tn)?/(1.82%)[—0.031z/a(Ty)
—0.9162*3 Ja(Tyn)* + 4.422°" Ja(Tyy)?
+ (L4 En+ &2 - &)/ =)
X (3kgTm/a(Tm))],

where Tp, denotes the melting temperature and a(Tp) =
(3/(4mpw))'/? with p, being the number density of ions at
the melting point. Then, the pressure is expressed as

pV/(NkgT) = —(a/3ksT)[0.031z/a + (0.916z*/>

+ 1.822By) /a® — 4.422°% /a1 + p(&),
(22)

@n

where By is treated as a constant which is indepentent
of the temperature and density. From eq. (22), assuming
(00/3p)T = 0, the density derivative of the pressure at con-
stant temperature is given as

(3p/dp)r/ksT = (1/ksT)[—0.031z/3
— 4(0.916z*3 + 1.8z By)/(9a)

+(22.127%)/9a")] + p (&) + £p'(€).
(23)

Then, substituting eqs. (14) and (23) into eq. (1), we obtain
/(g T/M) = (1/kgT)[—0.031z/3

— 4(0.916z** + 1.87* By)/ (9a)

+ (22.127) /(91 + [p(§) + &P (€)

+ @2/ {pE) +36p' ()@ Ino/dIn Ty},
(24)

where the formula for (d Ino/dInT)y is given in eq. (8).
3. Results

Using egs. (2), (15) and (24), we calculated the velocity of
sound of twenty simple metals. The results are summarized in
Table 1, together with input data and experimental data, and
are graphically shown in Figs. 1, 2 and 3. Generally speaking,
our theoretical results are in reasonable agreement with the
experimental data. As seen from the table, the role of the
electrons generally gives beneficial increases in the velocity
of sound through the structure-independent term. The main
features of our results are summarized as follows.

(1) There is no essential difference between Ascarelli’s
approach and the modified Ascarelli’s approach.

(2) Despite having included effects caused by the elec-
trons, no improvement can be seen over the hard-sphere
model for liquid alkali metals.The Fermi energy part is
almost cancelled by the electron-ion interaction part, i.e.,
(2/3)2Ex/ (ks T) — (4/3)A(p/pm)"* (ks T/ ks T) = 0, s0
that the velocity of sound, ¢, can be determined largely from
the hard-sphere model (see, egs. (2), (4) and (15)).

(3) For noble metals, no improvement can be seen over
the hard-sphere model in spite of having included effects
caused by the electrons. The reason for this appears to be
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Fig. 1 Comparison between theory and experiment for the velocity of
sound in liquid alkali metals near the melting point. The solid line denotes
the 45° axis.
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Fig. 2 Same as Fig. 1, but for liquid polyvalent metals.
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Fig. 3 Same as Fig. 1, but for liquid noble metals. The values of zj are
determined from I = 120 and used in eq. (25).

quite different from that for alkali metals, which will be dis-
cussed in the next section.

(4) The degree of progress made by including ef-
fects of the electrons tends to increase in the sequence
divalent — trivalent — tetravalent — pentavalent when the
number of valence electrons is increased. Much improvement
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Table 1 Velocity of sound calculated from the three model theories. Experimental data are taken from Tida and Guthrie.'®) Experimental
value of liquid Li is taken from Ref. 2) which is measured at 470 K.
T P ¢ Cealc (ms—l ) Cexpt
(X) 10° kgm‘3) eq. (2) eq. (15) eq. (24) ms™! eq. (24)/eq. (2) eq. (24)/eq. (15) eq. (24)/cexpt
Li 463 0.512 0.463 5435 5540 5599 4544 1.02 1.01 1.23
Na 378 0.928 0.463 2698 2677 2714 2527 1.01 1.01 1.07
K 343 0.826 0.463 1971 1887 1918 1877 0.97 1.02 1.02
Rb 313 1.476 0.463 1273 1212 1234 1260 0.97 1.02 0.98
Cs 303 1.836 0.463 1005 947 965 967 0.96 1.02 1.00
Cu 1423 7.947 0.463 3149 2961 2973 3407~ 0.94 1.00 0.87~
3450 0.86
Ag 1273 9.311 0.463 2286 2125 2136 2694 ~ 0.93 1.01 0.79~
‘ 2797 0.76
Au 1423 17.23 0.463 1789 1655 1662 2512 0.93 1.00 0.66
Mg 953 1.58 0.463 4167 4497 4539 4051 1.09 1.01 1.12
Zn 723 6.55 0.463 2213 2702 2729 2831~ 1.23 1.01 0.96~
2839 0.96
Cd 623 7.99 0.463 1567 1878 1901 2223~ 121 1.01 0.86~
2248 0.85
Hg 238 13.68 0.463 725 1135 1156 1478 1.59 1.02 0.78
Al 943 2.383 0.463 3934 5198 5246 4668~ 1.33 1.01 1.12~
4745 1.11
Ga 323 6.08 0.463 1432 2794 2830 2868~ 1.98 1.01 0.99~
2944 0.96
In 433 7.02 0.463 1292 2023 2052 2313 1.59 1.01 0.89
T1 588 11.26 0.463 1129 1569 1590 1662 1.41 1.01 0.96
Sn 523 6.99 0.463 1397 2430 2462 2416~ 1.76 1.01 1.02~
2462 1.00
Pb 613 10.68 0.463 1145 1810 1834 1805~ 1.60 1.01 1.02~
1821 1.01
Sb 933 6.46 0.463 1842 2896 2929 1895~ 1.59 1.01 1.55~
1900 1.54
Bi 573 10.03 0.463 1102 2040 2067 1614~ 1.88 1.01 1.28~
1664 1.24

is achieved for Hg, Ga, T1, Sn and Pb.

(5) Disagreement between theory and experiment can be
found for Li, Cu, Ag, Au,Hg, Sb and Bi. Among the liquid
metals studied here, the quantum correction might be needed
for Li, while Sb and Bi are classified as anomalous metals
having a change in the electronic state when they melt from
a crystal semimetal to a liquid metal.!> Hg is the obvious
exception.

4. Discussion

For noble metals, the predictions in terms of the genuine
hard-sphere model appear to be better than those based on
both Ascarelli’s and the modified Ascarelli’s approach. The
reason for this is discussed here. For noble metals, it seems
necessary to carefully take into account the effects of the over-
lap of electron shells of neighbouring ions because of the
large sizes of their ion cores. With this situation in mind,
we tried to calculate the velocity of sound using the following

formula (see, eq. (11) of Ref. 4))

(kg T/M) = (1/kgT)[—0.031z/3 — 4(0.916z* + 1.82%)
/(9a) + (22.12°)/(9a*) + 6By /a®]
+[pE) + ')+ 2/3){p®)
+3&p'(§)(@1na /3 InT)y)?].

The last term of the first square bracket represents the contri-
bution arising from effects of the ionic core due to the s-d
hybridization; the coefficient By can be determind by the
zero-pressure condition at the melting point. The explicit ex-
pression for By is given as follows:

By = (a(T,n)"/6)[0.031z/a(Ty) + (0.9162%° + 1.872)
Ja(Tw)* — 4.422°3 ja(Tw)® — (1 + & + 2 — £2)
/(1= En)*) X Bk Tm/a(Tw))]. (26)

As mentioned in Ref. 4), the effective valence, z, is deter-
mined from the value of a plasma parameter I". As sug-
gested by Itami and Shimoji,'? we employ I = 120 for no-
ble metals. The values of the velocity of sound calculated
from I = 120 are summarized in Table 2, together with the
values of z. As seen from the table, our theoretical results

(25)
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Table 2 Velocity of sound in liquid noble metals calculated from eq. (25). zr is the effective valence calculated from the plasma
parameter I = 12010 T/T,, = 1.049, 1.032 and 1.065 for Cu, Ag and Au, respectively, and p has been taken equal to py, (mass
density at the melting point). (3 Ino/01InT)yv = —0.064 for Cu, Ag and Au.

(1T<) (10° k’; ) £ zr (;:‘lcl) (c;’l‘;",l) eq. (25)/eq. (2) eq. (25)/eq. (15) €q.( 25)/cexpt
Cu 1423 7.947 0.463 1.22 3731 3407 ~ 1.18 1.26 1.08 ~
3450 1.10
Ag 1273 9311 0.463 1.21 2758 2694 ~ 1.21 1.30 0.99 ~
2797 1.02
Au 1423 17.23 0.463 1.26 2155 2512 1.20 1.30 0.86
agree reasonably well with the experimental data. A graphic = REFERENCES

comparison of the calculated with theexperimental values is
shown in Fig. 3 for demonstrative purposes.

5. Conclusion

We have shown that a hard-sphere model immersed in a
uniform background potential is capable of describing the ve-
locity of sound in liquid metals near the melting point. The
degree of progress made by including the effects of the elec-
trons generally increases when the number of valence elec-
trons is increased. For liquid alkai metals, however, the Fermi
energy part is almost cancelled by the electron-ion interaction
part so that the velocity of sound can be well described by a
hard-sphere model. As for noble metals, the s-d hybridization
effect must be taken into account in order to yield predictions
in better agreement with the experimental data.
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