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Solidification Path and Solute Redistribution of an Iron-Based Multi-Component
Alloy with Solute Diffusion in the Solid ∗
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The micro-segregation of an iron-based multi-component alloy, where the liquid is assumed to be completely mixed and finite diffusion
works in the solid, is calculated by a simple method. With this method, not only the solidification path in which the solute distribution
ratios change as functions of the composition, but also the solute redistribution profile after solidification can be estimated. As examples, the
solidification path and solute redistribution for an iron-carbon-nickel system and an iron-carbon-chromium system have been estimated and
compared with the predictions given by assumptions of the equilibrium solidification for carbon and Scheil-type solidification for the metallic
solute.
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1. Introduction

Several attempts1,2) have been made to predict the solidifi-
cation path of an iron-based multi-component alloy. For most
cases in the solidification of an iron-based alloy, we must
estimate the segregation of carbon as the first solute, where
the diffusion of carbon in the solid has to be considered and
the assumption of the equilibrium solidification about carbon
is at best a rough approximate assumption. Several mod-
els have been proposed for the case in which the liquid is
completely mixed and finite diffusion works in the solid.3–8)

In Wołczyński’s method9,10) for back-diffusion phenomenon
during the crystal growth the mass balance problem at the
solid-liquid interface is separately treated from the solute re-
distribution in the solid. Therefore, by using this method,
we can easily calculate the solidification path of a multi-
component alloy such as Fe–C–X alloy. In Fe–C–X alloys,
carbon is an interstitial solute element, while X (a metallic
element) is usually a substitutional solute element, and their
diffusivities in the solid are more than 3 orders different from
each other. For this reason, full numerical methods are of-
ten used1) to calculate the solidification path of an iron-based
multi-component alloy. Wołczýnski’s method makes it easier.
Moreover, by using this method,9,10) we can estimate solute
redistribution profiles at each stage of solidification and/or af-
ter solidification satisfying the mass balance of the interface.

2. The Model of Wołczýnski and Principle of Calculation

Wołczyński proposed a differential equation between the
liquid solute content,CL , and the fraction of solid,fS . The
author called it the B–F–W equation:

(1 − k)CL( fS; α)d fS = (1 − fS)dCL( fS; α)

+ αk fSdCL( fS; α) (1)

∗This Paper was Presented at the Spring Meeting of Japan Institute of
Metals, held in Tokyo, on March 27.

whereα = DSt f /L2 is the non-dimensional parameter of the
diffusion in the solid, andk is the distribution ratio of the so-
lute. In the expression ofα, DS is the diffusion coefficient
in the solid,t f the local solidification time andL is half of
the dendrite spacing. As the author said, this equation is a
certain modification of the analogous equation of the Brody
and Flemings theory.3) The left-hand side of the above equa-
tion expresses the solute which is rejected against the liquid
at the interface by solute distribution when the solid solidifies
over d fS. The first term of the right-hand side is the solute
increase in the liquid, and the second term is the solute which
is transpoterd by the diffusion in the solid.

In the Wołczýnski’s model and in the present work, basic
assumptions are:

1) complete mixing in the liquid within a volume element,
2) finite diffusion in the solid, and
3) equilibrium at the solid-liquid interface and negligible

interface undercooling.
In the paper,9,10) theα-parameter is interpreted as a ratio of

local solidification time,t f , to diffusion time,td , necessary to
ensure the homogeneity of the solid, expressed as:

td = L2

DS
, (2)

and

α = t f

td
. (3)

Thus, theα-parameter must be no less than zero and no more
than unity. The question is resolved, that is, what happens
if the diffusivity in the solid becomes larger in the Brody-
Flemings equation? The B–F–W equation reduces to an equi-
librium solidification equation whenα = 1, and reduces to
the Gulliver-Scheil equation whenα = 0. Equation (1) can
be integrated ifk is constant as:

CL = C0(1 + αk fS − fS)
k−1

1−αk when fS = 0, CL = C0.

(4)
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Let’s apply the B–F–W equation to predict the solidifica-
tion path and to estimate the solute redistribution of a multi-
component alloy. The procedure of the calculation of the
solidification path and solute redistribution consists of three
parts. This method divides the solidification stage into many
parts within each of which the distribution ratios can be
treated as constant. In other words, we assume that

at 0≤ fS ≤ fS,1 k1 = k0
1, k2 = k0

2, · · ·
at fS,1 ≤ fS ≤ fS,2 k1 = k1

1, k2 = k1
2, · · · (5)

and so on. In the above equations, the subscript ofk means
j-th solute element.

First, at each stage of solidification, the procedure calls
the the progressive-type equation corresponding to eq. (4) for
each solute element,j , as;

C j
L = C ′, j (1 + αk j fS − fS)

k j −1
1−αk j , (6)

whereC ′, j is the integral constant and can be estimated for
the tradition from the 0th stage to the 1st stage as:

logC ′, j = logC0 − k1
j − 1

1 − αk1
j

log[1 + αk1
j fS,1 − fS,1]

+ k0
j − 1

1 − αk0
j

log[1 + αk0
j fS,1 − fS,1] (7)

and so on. This formation is analogous to that of Mori and
Ogi.12) But in this study, we use the new equation, the solu-
tion of the B–F–W equation. We may calculate the liquid so-
lute content by using a finite difference formulation of eq. (1),
but with use of an analytical solution we need not worry the
convergence problem of the Runge-Kutta method.

Second, before calling the progressive-type formation of
the solution of B–F–W equation, we must call the thermo-
dynamic database and get the tie-line (getk j s), because the
distribution ratios are the functions of the liquid composition.
Moreover, we can include the affect of the solidifying tem-
perature on the diffusivity of solute in the solid by changing
α step by step. But in this study the temperature dependence
of α was not included.

Third, we can estimate the solute distribution in the solid
after solidification and/or at given stage of solidification with
the form:

Cβ

S ( fS; f final
S , α) = CS( fS; α) + β1( fS; f final

S )

× β2( f final
S , α)CL( fS; α). (8)

Where, Cβ

S ( fS; f final
S , α) is the solute content in the solid

at the positionfS when the solidification proceeds tof final
S ,

while CS( fS; α) and CL( fS; α) are the content in the solid
and the content in the liquid at the solid-liquid interface
respectively when the fraction of the solid reachesfS .
This equation assumesCβ

S ( fS; f final
S , α) is increased from

CS( fS; α) by the solute redistribution with the amount of
β1( fS; f final

S )β2( f final
S , α)CL( fS; α). The expressions ofβ1

and β2 are introduced based on physical consideration.9,10)

In the above equation,β1 is the coefficient of the extent of
solute redistribution in the solid, andβ2 is the intensity of
the solute redistribution in the solid. Figure 1 shows the
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Fig. 1 Physical interpretation of the coefficient, β( fS; f final
S , α); fm is any

considered value of the crystal amount.

physical interpretation of the coefficient of solute redistribu-
tion β( fS; f final

S , α), that is β1( fS; f final
S )β2( f final

S , α). The so-
lute content in the solid at the solid-liquid interface is usu-
ally lower than that of the no-diffusion case, which might be
called the α-effect, but the solute content in the solid ought
to be enriched due to diffusion in the solid (solute redistribu-
tion) when solidification proceeds to f final

S . The latter might
be called the β-effect. β1 can be estimated by predicting the
equilibrium solidification path of the alloy, because β1 is not
affected by α. If we substitute α = 1 into eq. (8) that is,
we consider the equilibrium solidification, the equation be-
low can be obtained:

CS( fS; 1) + β1( fS; f final
S )β2( f final

S , 1)CL( fS; 1)

= CS( f final
S , 1), (9)

where Cβ

S ( fS; f final
S , 1) = CS( f final

S , 1). As we can assume
β2( f final

S , 1) = 1 from the intensity of the solute redistribu-
tion, then we get:

β1( fS; f final
S ) = CS( f final

S ; 1) − CS( fS; 1)

CL( fS; 1)
. (10)

β2 can be defined by introducing the total mass balance of the
solute:
∫ f

final
S

0
Cβ

S ( fS; f final
S , α)d fS + (1 − f final

S )CL( f final
S , α) = C0.

(11)

Substituting the definitions of Cβ

S and β1 into eq. (11), the
following equation can be obtained:

∫ f final
S

0
CS( fS; α)d fS

+ β2( f final
S , α)

∫ f final
S

0
β1( fS; f final

S )CL( fS; α)d fS
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+(1 − f final
S )CL( f final

S ; α) = C0. (12)

The above formation can be calculated for each solute ele-
ment. As is mentioned in introduction of this paper, we can
calculate solute distribution profiles at each stage of solidi-
fication, but for practical purposes it would be sufficient to
estimate the solute distribution profile just after solidification
or just after the liquid reaches the eutectic line.

To estimate the solidification path and solute redistribu-
tion, the thermo-dynamic database may be called by using
Thermo-Calc, but in this work it was done by calling a sub-
routine made by using Thermo-Calc prior to running the main
program.

In Fig. 2, the flow chart to calculate the solidification path
and the solute redistribution is shown. To estimate the val-
ues of β1 and β2, the equilibrium solidification is calculated
concurrently with the definite value case of α.

call phase 

diagram

call phase

diagram

for content for content
j = 1, ..., N j = 1, ..., N

calculate new
liquid content
with B-F-W

method

calculate new
liquid content

with lever
rule

calculate

tie-line

f   = 0S

the liquid reached 

eutectic?

YES

NO

increase

f S

Input data

START

calculate solute
redistribution

in the solid

END

Has

Fig. 2 Flow chart of calculation.

3. Accuracy Estimate

3.1 Sensitivity of the calculated results to the total num-
ber of the divisions of the growing crystals

In this method, as we calculate the solidification path by
dividing the growing crystals into a number of pieces, it is
meaningful to estimate the effect of the number of the total
divisions on the calculated result. We calculated the solidi-
fication path and solute redistribution of several alloy cases
with the number of divisions as 102, 103, 104, 105, 106 and
107, and within the 104 to 106 range the results varied little.
Therefore the demonstration shown below is given with 105

divisions. Needless to say this estimate is sensitive to the vari-
ation of the distribution coefficients and the accuracy of their
data.

3.2 Comparison with other methods
It is also meaningful to compare the results of this method

in a simple binary system with the results of the Gulliver-
Scheil model,11) the lever-rule, Kobayashi’s solution6) and
the Brody-Flemings solution,3) because the Gulliver-Scheil
model and the lever-rule (equilibrium) are the limit cases of
the diffusivity in the solid.

For this purpose, calculations are performed for a simple
binary system, in which k = 0.5, constant and α = 0.1 or
α = 0.01. The liquid compositions normalized by the initial
composition are shown in Fig. 3; also, the results using the
Gulliver-Scheil model and the lever-rule are shown. From this
figure it can be seen that our results are sandwiched between
the Gulliver-Scheil model and the lever-rule. (The result of
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Fig. 3 Comparison for a simple binary system.
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Gulliver-Scheil model for fS = 1 is not shown in this figure,
because CL/C0 = ∞. The nearest result to the right frame is
for fS = 0.99.) This proves the validity of the physical limi-
tation of the back-diffusion parameter (0 ≤ α ≤ 1). Further-
more, at the final stage of the solidification, the compositions
of ours for α = 0.01 are greater than that for α = 0.1. This
result is physically justified. The differences between ours,
Brody-Flemings and Kobayshi’s are small.

3.3 Accuracy of the estimate of solute redistribution af-
ter solidification

If we use the progressive-type formulation of eq. (4), β1-s
and β2-s ought to be estimated numerically in the node points
of the crystal. And the estimate of β-s may affect the accu-
racy of the estimate of solute redistribution after solidifica-
tion. Therefore, the estimate of the solute redistribution was
compared to the results of the full analytical calculation for a
simple binary case of k = 0.5 and α = 0.1 or α = 0.01. With
the total divisions number of 105 for the growing crystal and
total node number of 103 for the estimate of β-s, that is, di-
viding the crystals into 1000 pieces for numerical integration,
the error of the estimated solute content was less than 0.052%
for α = 0.01. For the case of α = 0.1, the error was smaller.
Such errors can be neglected.

4. Preliminary Arrangement of the Program to Calcu-
late Tie-lines

Before writing the main program, the program to calcu-
late tie-lines has to be prepared. In the present case, Fe–C–Ni
alloy and Fe–C–Cr alloy are considered. Fe–C–Ni alloy is a
typical sample of cast steel. To calculate the solidus compo-
sition (CC

S , C Ni
S ) from the liquidus composition (CC

L , C Ni
L ),

several isothermal sections of the phase diagram were calcu-
lated with Thermo-Calc, and a linear approximation was used
between the calculated temperatures. Figure 4 illustrates the
principle. Between the temperatures TL = T1 and TL = T2

the liquidus composition expressed by the hatched triangle
area corresponds to the solidus composition expressed by the
same-hatched area. This is an elementary algebraic problem,
and we can produce this type of program automatically from
the data.

We also considered the Fe–C–Cr alloy in order to consider
the solidification path of high-chromium cast iron. In this

T  = T

T  = T T  = T
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LL 2
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Fe

X

C

Fig. 4 Preliminary arrangement of the program to calculate tie-lines.

case, which eutectic will solidify at the final stage is an inter-
esting question.

5. A Demonstration for Fe–C–Ni and Fe–C–Cr Alloy
and Discussion

In Fig. 5, the calculated solidification path using the present
method is shown. In Figs. 5, 7 and 9, the numerals in the
figures are the fractions of the solid. The α-parameters are
assumed as αC = 0.1 and αNi = 0.00002. The calculated
solidification path with complete diffusion for carbon and
no diffusion for nickel is also shown in the same figure de-
noted by Lever + Scheil. The initial compositions are 0.015
mole fraction carbon and 0.07 mole fraction nickel, that is,
0.325 mass% carbon and 7.42 mass% nickel. From this fig-
ure, it can be said that the back-diffusion phenomenon causes
the difference between the final compositions of the solidi-
fication. Also it produces the difference between the solidi-
fication paths. The difference becomes larger near the final
stage of the solidification (about fS > 0.9) but at the initial
and middle stages of the solidification the difference is not
large. In Fig. 6, the solute distribution profiles after solidifi-
cation are shown for the present case. Note that it is predicted
in the present calculation that the nickel content will become
smaller than the initial content at the final stage. That is be-
cause the distribution coefficient for nickel becomes larger
than unity along the solidification path at the final stage of
the solidification.

In Fig. 7, the calculated solidification paths using the
present method and the lever-rule plus Scheil-type soidifica-
tion are shown for the initial composition of 0.02 mole frac-
tion carbon and 0.1 mole fraction nickel. In this case, the so-
lidification path using the present methods reaches the FCC-
cementite eutectic valley when the fraction of solid reaches
0.997. In Fig. 8, the solute distribution profiles just after the
eutectic appears in the present method are shown.

In Fig. 9, the solidification paths of 0.045 mole fraction
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Fig. 5 Solidification paths for Fe–1.5 at%C–7.0 at%Ni alloy.
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Fig. 6 Solute redistribution profile in the solid for Fe–1.5 at%C–7.0 at%Ni
alloy.
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Fig. 7 Solidification paths for Fe–2.0 at%C–10.0 at%Ni alloy.

carbon and 0.092 mole fraction chromium Fe–C–Cr alloy and
0.08 mole fraction carbon and 0.04 mole fraction chromium
are drawn. In the method of the present study, the α values
of 0.1 for carbon and 0.00003 for chromium are used. For
the former case, solidification paths calculated with lever-rule
plus Scheil approximation are also drawn. The experimental
composition (EPMA)2) of the crystallized eutectic is sand-
wiched between the lever-rule plus Scheil and the present
work. Yamamoto and Ogi2) reported that the distribution
coefficients of chromium and carbon for the experimentally
measured data and Thermo-Calc data are somewhat different.
We multiplied the correction coefficient by the distribution
coefficient from Thermo-Calc to coincide with the coefficient
of the measured data, and gained the eutectec contents where
the solidification path reaches the eutectic line, 14.4 at% car-
bon and 18.1 at% chromium; that is, the eutectic predicted
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Fig. 8 Solute redistribution profile in the solid for Fe–2.0 at%C–10.0 at%Ni
alloy.
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Fig. 9 Solidification paths for Fe–C–Cr alloy.

to crystallize came near to the experimental data. But, this
merely means that the accurate distribution coefficient data
is important. Moreover, when we increased the α-parameter
of carbon to 0.15 using the Thermo-Calc data, the eutectic
contents changed to 14.6 at% carbon and 17.1 at% chromium.
This also indicates the importance of the estimation of the α-
parameter.

By calculation, the Fe–8.0C–4.0Cr alloy will reach the ce-
mentite region.
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Fig. 10 Solute redistribution profile in the solid for Fe–4.5 at%C–9.2 at%Cr
alloy.

In Fig. 10, the estimated solute redistributions for the for-
mer case of Fe–C–Cr alloy just after the liquid reaches re-
gions other than FCC phase are drawn. With use of the lever-
rule plus Scheil approximation, the carbon content is uniform,
while the carbon content in the solid at the last stage increased
to twice that of the first solidified part in the present work.

6. Conclusion

The use of the B–F–W equation is useful to calculate the
solidification path of a Fe–C–X alloy from the examples of

ternary alloys and the results of a simple binary alloy. We
can calculate the solidification path and the solute distribution
profile after solidification of an iron-carbon-X alloy by using
this method.
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7. Appendix Nomenclatures

Symbol Meaning Definition Unit

C0 the initial solute content in the liquid mole fraction

CL solute content in the liquid mole fraction

CL( fS; α) solute content in the liquid at the solid- mole fraction

liquid interface when the fraction of the

solid is fS with the non-dimensional

diffusion parameter α

C j
L content of solute, j , in the liquid mole fraction

CS solute content in the solid mole fraction

CS( fS; α) solute content in the solid at the solid- mole fraction

liquid interface when the fraction of the

solid is fS with the non-dimensional

diffusion parameter α

C j
S content of solute, j , in the solid mole fraction

Cβ

S ( fS; f final
S , α) solute content in the solid at the mole fraction

position fS when solidification proceeds

to f f inal
S with the non-dimensional
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diffusion parameter α

DS diffusion coefficient in the solid m2 · s−1

L half of the primary dendrite arm spacing m

T temperature K

TL liquidus temperature K

TS solidus temperature K

fS fraction of the solid —

f final
S fraction of the solid when the —

solute redistribution is estimated

k distribution ratio of the solute CS/CL —

k j distribution ratio of solute, j C j
S/C j

L —

td diffusion time necessary to ensure the L2/DS s

homogeneity of the solid

t f local solidification time s

α non-dimensional parameter of the DSt f /L2 —

diffusion in the solid

β( fS; f final
S , α) coefficient of solute redistribution β1( fS; f final

S )β2( f final
S , α) —

within the solid

β1( fS; f f inal
S ) coefficient of extent of solute see eq. (10) —

redistribution within the solid

β2( f f inal
S , α) coefficient of intensity of solute see eq. (12) —

redistribution within the solid


