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A Numerical Study on Composition Pattern Formation in Immiscible
Alloys under Irradiation Condition
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The kinetics of spontaneous composition pattern formation in a quenched alloys under irradiation is numerically studied by means of
phenomenological Enrique-Bellon equation for the local concentration field. In the present model the irradiation effect is modeled as a ballistic
mixing with an average distance of atomic relocation R and its frequency Γ . Several two-dimensional computer simulations show that the
competitive mechanism between phase separation and irradiation-induced mixing might provide a novel way to stabilize and tune the steady-
state nanostructures of phase separating materials in some region on (R, Γ ) space.
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1. Introduction

The kinetics of phase transformations in materials driven
far from thermodynamically equilibrium by an external driv-
ing force has recently attracted considerable attention. The
term “driven systems” has been introduced to refer to these
systems.1) A typical example of an evolving non-equilibrium
system is given by materials under irradiation. Irradiation
can create a variety of different phenomena, such as colli-
sion cascades, cascade damage, and radiation-enhanced dif-
fusion, depending sensitively on the actual experimental con-
dition.2) For metals and miscible alloy systems, experimen-
tal and theoretical study on irradiation effects have been done
extensively.1) For instance, spontaneous formation of metallic
nanostructures under irradiation have been recently observed
in Au/SiO2 and Pt/SiO2.3) On the other hand, immiscible al-
loys under irradiation have, however, been less studied, since
more complicated situations can be encountered through the
interplay between irradiation and the internal kinetics in these
systems.2)

In particular, an important but less studied case is ion-beam
mixing of immiscible quenched alloys, where irradiation-
induced ballistic mixing acts in opposition to thermodynami-
cally driven kinetics like a spinodal decomposition. Each time
an external particle collides with the solid, a local atomic re-
arrangement is produced. This rearrangement has a ballistic
component that mixes the atoms regardless of their chemical
identity, leading to bring the system to a random solid solu-
tion. During this ballistic mixing, a number of exchanges of
atomic positions occur with an average relocation distance R
and the frequency of these forced exchanges Γ , whose typ-
ical values are R∼10 nm and Γ ∼104 s−1.2) To explore such
competitive effects, the Cahn-Hilliard type dynamical equa-
tion for the local concentration field4) is known to provide a
powerful tool, which has proposed by Enrique and Bellon.5)

As far, their continuum model has been used only to discuss
the linear stability analysis for the limiting case of spinodal
decomposition from the unstable state under ballistic mixing.

In this work, we report on two-dimensional computer sim-
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ulation results of Enrique-Bellon model, focusing on the long
time behavior of compositional pattern formation. Especially,
we will study the following effects on the morphology; (1) the
average exchange range R, (2) the exchange frequency Γ , and
(3) the initial homogeneous concentration Si of the alloy. De-
spite the importance of controlling the compositional struc-
tures, these have been less studied previously, except for the
mean field treatment and kinetic Monte Carlo simulation only
for Si=0.6) Numerical calculation of the continuum Enrique-
Bellon model is computationally advantageous to study the
large-scale and long-time properties of the system, compared
with the kinetic Monte Carlo method. It is because the con-
tinuum model is based on the mesoscopic picture using the
coarse-grained free energy, while the Monte Carlo simulation
model is based on the microscopic picture.

2. The Model

We studied the spontaneous formation of compositional
patterns in a quenched binary alloy with a positive heat of
ballistic mixing under irradiation. The equation governing
the time evolution of the system was given by Enrique and
Bellon5)

∂

∂t
S(r, t) = M∇2[−2AS(r, t) + 4BS(r, t)3

− 2C∇2S(r, t)] − Γ [S(r, t) − 〈S〉R(r, t)]
(1)

where S(r, t) is a local composition difference of the two
constituents of the alloy at time t and position r . Here, we
have chosen the system free energy density as −AS2 + BS4 +
C(∇S)2 with positive coefficients A, B, and C , which are
assumed to be constant as well as a mobility M in eq. (1).
Estimation of these parameters would be required for the mi-
croscopic information about a specific system. The first term
in the above equation represents the usual phase separation
dynamics given by Cahn and Hilliard,4) and the second terms
describes the forced mixing term due to irradiation with the
frequency of atomic relocation Γ . In the second term, 〈S〉R

represents a finite average of the concentration profile around



642 Y. Enomoto and M. Sawa

r , given by

〈S〉R(r, t) ≡
∫

S(r ′, t)wR(r ′ − r)dr ′
/∫

wR(r ′ − r)dr ′

(2)

where the weight function wR(x) ≡ exp(−|x|2/(2R2)) de-
notes the distribution of atomic relocation distance with the
average exchange distance R. In the model, for the sake of
simplicity, the concentration of irradiation-induced point de-
fects was assumed to have reached a steady value, and also the
contribution of interstitials as well as defect sinks and clus-
ters7) was neglected. Moreover, non-ballistic mixing effects,
any coupling between the degree of order and the concen-
tration field8) are not considered. Due to these assumptions,
the above model excludes phenomena related to the order-
disorder transition and macroscopic solute migration such as
irradiation-induced heterogeneous precipitation. We focus
on two-dimensional compositional patterning on the irradi-
ated materials, neglecting the bulk diffusion and irradiation-
induced phenomena occurring in the interior of the sample.
These situations can be easily realized in thin film experi-
ments with not too energetic cascades and some tempera-
ture region depending on the irradiated material properties2)

(e.g., 1 MeV Kr ion irradiation in Ag–Cu thin films at tem-
perature ranging from 80 to 473 K9)). At least, the follow-
ing two-dimensional simulation results might be applicable
for the system with D/Γ �R2 where D is the bulk diffusion
constant, since the bulk diffusion-induced phenomena can be
ignored in this case.

Now, it was discussed on the linear stability analysis of the
initial homogeneous state. Similar analyses have been done
for the case Si = 0.5) Linearizing eq. (1) about S(r, t) = Si

in Fourier space, the equation for the fluctuations, S̃(k, t) ≡∫
dr[S(r, t) − Si ] exp(−i k · r), has been obtained as

∂

∂t
S̃(k, t) = [2M(A − 6S2

i B)k2 − 2MCk4

− Γ (1 − e−k2 R2/6)]S̃(k, t) (3)

with k = |k|. The linear stability analyses of eq. (3) have
shown that there are two characteristic values of Γ , denoted
by Γ1 and Γ2, which depend on R and Si . For Γ > Γ2 the
system is homogeneously mixed (solid solution), while for
Γ < Γ1 the homogeneous state is linearly unstable to grow,
leading to macroscopic phase separation. For Γ1 < Γ < Γ2,
certain modes k with k2− < k2 < k2+ are linearly unsta-
ble, suggesting a wave length selection at long times5) (i.e.,
the steady-state patterning). Moreover, an interval of the ex-
change frequency window [Γ1, Γ2] decreases with R, reach-
ing a zero value at a critical value Rc, when Γ1 = Γ2. Thus,
the steady-state patterning is not possible for ballistic mix-
ing with exchange distance smaller than Rc. For R � Rc ≡√

C/(A − 6S2
i B), we obtain Γ1 = 2R−3 M

√
(A − 6S2

i B)C ,

Γ2 = M(A − 6S2
i B + C R−2)2/(2C), k− = 1/(2R), and

k+ =
√

0.5R−2
c − 0.5R−2. These analytic predictions have

been partially confirmed by the kinetic Monte Carlo simu-
lations only for the case Si = 0.6) The question is whether
the similar results are obtained for the present continuum ap-
proach including the non-zero Si case as well.

3. Simulation Results

Two-dimensional computer simulations of the phase sepa-
ration dynamics under irradiation was carried out by changing
values of Si , Γ , and R. The system considered here is a two-
dimensional plane, which corresponds to irradiated material
surface. In the following simulations, we used the dimen-
sionless variables such as re ≡ R/L0 and g ≡ t0Γ , by using
the units of length L0 = √

C/A, time t0 = C/(2M A2), and
concentration field S0 = √

A/(2B). The resulting dimen-
sionless eq. (1) is solved numerically on a 256 × 256 square
lattice with periodic boundary conditions, using a standard
finite-difference scheme with mesh size being 0.5 and time
step 0.01 Similar numerical procedure has been used in our
previous work with different model.10) The initial state of the
system consists of a Gaussian random distribution of the con-
centration with the mean value Si/S0 and standard deviation
0.1.

First of all, the composition patterns, S(x, y, t)/S0, with
their amplitude along the x-axis, S(x, y/L0 = 64, t)/S0,
are shown in Figs. 1–5 for the case re = 8 at t/t0 = 50,
500, and 1000. The pattern evolution of S(x, y/L0 =
64, t)/S0 was also shown. In these figures, lattice points with
S(x, y, t)/S0 < 0 are plotted by dots. Note that for re = 8,
we obtain g1 ≡ t0Γ1 = 0.0019 and g2 ≡ t0Γ2 = 0.258 for
Si/S0 = 0, and g1 = 0.0016 and g2 = 0.139 for Si/S0 = 0.3,
respectively. For g = 0.0005 (<g1), usual macroscopic phase
separation processes can be seen in Fig. 1 (spinodal decompo-
sition with interconnected patterns at Si/S0 = 0) and in Fig. 4
(Ostwald ripening with droplet patterns at Si/S0 = 0.3). On

Fig. 1 Compositional patterns S(x, y, t)/S0 with its amplitude,
S(x, y/L0 = 64, t)/S0, for re = 8, Si = 0, and g = 0.0005 at t/t0 = 50,
500, and 1000. Dots are plotted at lattice points with S(x, y, t)/S0 < 0.
Time evolution of S(x, y/L0 = 64, t)/S0 is also shown.
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Fig. 2 Compositional patterns S(x, y, t)/S0 with its amplitude,
S(x, y/L0 = 64, t)/S0, for re = 8, Si /S0 = 0, and g = 0.05
at t/t0 = 50, 500, and 1000. Dots are plotted at lattice points with
S(x, y, t)/S0 < 0. Time evolution of S(x, y/L0 = 64, t)/S0 is also
shown.

Fig. 3 Compositional patterns S(x, y, t)/S0 with its amplitude,
S(x, y/L0 = 64, t)/S0, for re = 8, Si /S0 = 0, and g = 0.5 at t/t0 = 50,
500, and 1000. Dots are plotted at lattice points with S(x, y, t)/S0 < 0.
Time evolution of S(x, y/L0 = 64, t)/S0 is also shown.

Fig. 4 Compositional patterns S(x, y, t)/S0 with its amplitude,
S(x, y = 64/L0, t)/S0, for re = 8, Si /S0 = 0.3, and g = 0.0005
at t/t0 = 50, 500, and 1000. Dots are plotted at lattice points with
S(x, y, t)/S0 < 0. Time evolution of S(x, y/L0 = 64, t)/S0 is also
shown.

Fig. 5 Compositional patterns S(x, y, t)/S0 with its amplitude,
S(x, y/L0 = 64, t)/S0, for re = 8, Si /S0 = 0.3, and g = 0.05
at t/t0 = 50, 500, and 1000. Dots are plotted at lattice points with
S(x, y, t)/S0 < 0. Time evolution of S(x, y/L0 = 64, t)/S0 is also
shown.
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the other hand, a solid solution where S(r, t) � Si = 0
even at long times, is observed in Fig. 3 for g = 0.5 (>g2).
The same behavior has been obtained for Si/S0 = 0.3 and
g = 0.5, but this result is not shown here. For intermediate
value of g at long times (here, g = 0.05 and t ≥ 500), we can
see the steady-state labyrinthine pattern at Si/S0 = 0 in Fig. 2
and the steady-state droplet patterns at Si/S0 = 0.3 in Fig. 5.
These results are in agreement with theoretical analyses men-
tioned in the preceding section.

To analyze both the time evolution and long-time behav-
ior of compositional patterns, we examine the structure factor
of the system, I (k, t) ≡ 〈|S̃(k, t)|2〉, where 〈· · · 〉 denotes
the average over ten independent simulation runs. In the fol-
lowing discussion, we use the spherically averaged structure
factor I (k, t) and its characteristic wave number 〈k〉, which
are defined by I (k, t) = ∫

I (k, t)dΩ with k = |k| and solid
angle Ω in k-space, and 〈k〉 = ∫

k I (k, t)dk/
∫

I (k, t)dk,
respectively. Figures 6(a) and (b) show the averaged structure
factor I (k, t) at long time t/t0 = 500, and the time evolution
of the characteristic wave number 〈k〉, respectively, at re = 8
and Si/S0 = 0 for g = 0.0005, 0.05, and 0.5. The result at
g = 0.5 is not shown in Fig. 6(b), since 〈k〉L0 � 1 in this
case. From Fig. 6 and other simulations with different param-

Fig. 6 (a) Spherically averaged structure factor I (k, t/t0 = 500)/(S2
0 L4

0)

at Si /S0 = 0 and re = 8 for g = 0.0005 (©), 0.05 (● ), and 0.5 (▲). (b)
Time evolution of the characteristic wave number 〈k〉L0 at Si /S0 = 0 and
re = 8 for g = 0.0005 (©), and 0.05 (● ). The slope of a line indicates the
value of temporal power law exponent of 〈k〉.

eter values, asymptotic behavior of structure factors is clas-
sified into three regimes corresponding to respective pattern
morphology: (1) for phase separation regime, I (k, t) has a
single peak at a time-decreasing peak position, and the char-
acteristic wave number decreases with time as 〈k〉 ∼ t−1/3

(the well-known 1/3 growth law exponent); (2) for steady-
state regime, I (k, t) has a single peak, and the peak position
and 〈k〉 gradually become constant, which correspond to the
characteristic length of steady-state patterns; (3) for solid so-
lution regime, I (k, t) � 0, which corresponds to a homoge-
neous state. For the steady-state regime, 〈k〉 is found to be
an increasing function of g as is shown in Fig. 7(a). From
Fig. 7(b) with further simulations, we also find a scaling rela-
tion between 〈k〉 and re for re ≥ 8 as re〈k〉L0 = F(gr3

e ) with
a scaling function F(x). Such scaling behavior has been pre-
dicted theoretically for large re,5) but this is the first evident
confirmation. Finally, we note that the similar results have
been obtained for the non-zero Si case as well.

Since we have obtained 〈k〉L0 ∼ 0.6 in the present simula-
tion at g = 0.005, re = 8 and Si = 0, and also Rc ∼ 0.1 nm
in most experiments,2) the characteristic wave length of the
steady-state pattern in this case is estimated as 2π/〈k〉 ∼
1 nm. Thus, the irradiation might be used as a processing tool

Fig. 7 (a) Characteristic wave number 〈k〉L0 for the steady-state patterns at
Si /S0 = 0 as a function of g for re = 4 (©), 8 (● ), and 16 (▲). (b) Scaling
relation between 〈k〉L0 and g for the steady-state patterns at Si /S0 = 0 for
re = 4 (©), 8 (● ), and 16 (▲).
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to synthesize nanostructures in a self-organized manner. The
present simulation is restricted to the two-dimensional case.
However, as is similar to the case of the simple phase sep-
aration dynamics,11) the qualitative properties of the system
such as the existence of scaling behavior and occurrence of
the steady-state regime are expected to be appropriate even
for the three-dimensional case. On the other hand, the de-
tailed features such as the explicit form of scaling function
and onset time of the steady-state regime might depend on
the dimensionality.

4. Conclusion

In summary, we have numerically studied the two-
dimensional phase separation dynamics of quenched alloys
driven by irradiation, where the phase separation dynamics
competes with the irradiation-induced ballistic mixing. This
is the first simulation study of the continuum Enrique-Bellon
model. From several simulation results it has been found that
the irradiation-induced ballistic mixing can affect the dynam-
ical process of phase separation in various manners, and it
might provide a novel way to control the steady-state com-
positional morphology of phase separating materials under
some irradiation conditions. Thus, the present model has been
shown to be useful and potentially rich to examine appropri-

ate experimental conditions to create a favorable steady-state
nanoscale pattern morphology, at least in a phenomenological
level.

In the present work we have concentrated on rather simpli-
fied situation. In order to compare simulation results with real
experimental data, both of further simulation study including
other important factors neglected here (as was mentioned in
Sec. 2) and further theoretical analysis of numerical results
are needed, as well as estimations of phenomenological pa-
rameters in the model. These are left for future study.
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