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In order to clarify the mechanism of the bainitic transformation, a new technique utilizing interference fringes in transmission electron
micrographs was applied for observations of bainitic precipitates in copper alloys. Based on the theoretical consideration of image formation, the
appearance of these fringes along the interface of a precipitate was taken to be evidence of the existence of a shear-type transformation strain.
From the analysis on the spacing of interference fringes, the direction and magnitude of the shear strain were obtained. It was found that the shear
strain associated with bainites has almost the same crystallographic direction and magnitude as the one associated with martensites in the same
alloy. On the basis of these findings, a new model on the transformation mechanism is presented, in which the dislocation motion bringing about
the lattice transformation is controlled by the atomic diffusion through a local concentration change. This model consistently explains both of
existence of the transformation strain and the diffusion-control nature of the transformation.
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1. Introductionn

The study on the mechanism of the bainitic transformation
has a long history, in which there has been a lot of
controversy on the role of lattice shearing in the trans-
formation process.1–6) In previous papers,7–9) it has been
shown that the bainitic transformation in a copper alloy is
significantly accelerated by the application of an external
stress. This result strongly suggests that transformation
products are associated with a transformation strain, probably
of the shear type. The applied stress must do work through
this transformation strain and prompt the transformation. In
order to clarify the nature of the transformation strain more
precisely, detailed observations by the transmission electron
microscopy has been planned in the present work. Especially
we make use of an experimental technique developed
recently,10) in which a special kind of interference fringes
are utilized. This technique should reveal shear strain
associated with plate-shaped precipitates and enable one to
measure the strain quantitatively. We will apply this
technique for small bainitic plates produced at the early
stage of the transformation.

There are several previous works which have suggested the
existence of the transformation strain in bainites by electron
microscopic observations. In a work,11) a stress field due to a
bainitic plate was deduced by observing the shape of
intersecting plates. In another work,12) a strain field associ-
ated with a bainitic plate was inferred from observations on
some irregularities in extinction contour lines. Preliminary
observations on interference fringes along interfaces of
bainites have been reported by the present authors.13) In the
present work, more detailed observations and elaborated
analyses are presented. The results provide direct evidence on
the existence of a shear-type transformation strain. In the

latter half of the present paper, on the basis of the present
observations, we propose a new model on the transformation
mechanism, which is able to explain both of existence of the
shear strain and the diffusion-control nature of the trans-
formation. The latter nature has been deduced from the
composition analysis of transformation products by means of
the analytical electron microscopy.14–20) This nature has also
been suggested in a previous paper,8) in which the activation
energy associated with the bainitic transformation has been
measured. Traditionally, the problem setting on the trans-
formation mechanism of bainites has been such an alternative
one to ask which is the true mechanism between the shear
process or the diffusional process. In contrast, the model
shown later takes both processes to be indispensable in a
single mechanism. Previous models will be discussed in the
light of this new view in the last part of the paper.

2. Experimental Procedure and Results

Rolled sheets of Cu–28.9 at%Zn–6.1 at%Al were heat-
treated at 1123K for 300 s and then quenched into water. This
procedure brought specimens into a homogeneous � phase
(of the ordered bcc structure). In order to induce the bainitic
transformation, specimen sheets were aged in an oil bath at
433K for 60–100 ks. By this procedure, the transformation
was expected to proceed to 5–10% of the saturation level.8)

Disc specimens cut out from these sheets were thinned
electrolytically in a solution of phosphoric acid saturated
with chromic acid. They were observed by an electron
microscope (JEM200CX) at the accelerating voltage of
200 kV.

Since the aging period was rather short, observed bainitic
precipitates were all in an early stage of growth. It is well
known21) that the crystallographic structure of bainitic
precipitates in copper alloys is the 9R type, which is the
same as that of martensites in the same alloys. This was
confirmed in the present experiments also. More precisely, it
was identified as the disordered 9R structure, while marten-
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sites has the ordered 9R structure. In general, bainitic
precipitates have a shape of thin plate, whose habit plane is
approximately parallel to {12 11 2} of the matrix bcc crystal.
(Hereafter, all crystallographic indices are given in the axes
of the matrix crystal). This form of habit planes is also the
same as that of martensites. Figure 1(a) shows a typical
example of paired plates. Two plates are connected at a line
to make a hinge shape having an obtuse angle. In this figure,
each plate takes a rectangular shape which was cut out from
an original broad plate by the upper and lower surfaces of the
specimen. Such paired plates of bainites in copper alloys
have been reported in many previous papers.7) In contrast,
such hinge-shape pairs of plates are hardly observed in the
martensitic transformation. It is known that a hinge-shape
pair is composed of two bainitic variants whose habit planes
have indices, {12 11 2} and {12 11 2̄}, respectively. These
variants are in a twin relation of which the mirror plane is
parallel to {0 0 1} plane. The junction line between the plates
is approximately parallel to h1 1̄ 0i direction. In this figure,
interference fringes appearing in bainitic plates may be
obvious. They are roughly parallel to the edges of the plates
and densely packed towards the edge on the left end. Since
they have a nature of equal-thickness contours, as shown
later, we can deduce lenticular shapes of these plates from
observations of these fringes. These fringes appear only when
a picture is taken in a Bragg reflection of the matrix crystal.
They never appear in a picture taken in a reflection of

bainites. For these plates, crystallographic analyses were
performed by means of electron diffraction. We identified the
habit planes of plates on the left and the right in Fig. 1(a) as
(12 2̄ 11) and (12 2 11), respectively. The junction line of the
plates is parallel to [1 0 1̄] direction. Figure 1(b) shows
another example of bainitic plates, in which, in a plate at the
center, a reflection of the bainite is excited in addition to a
reflection of the matrix. It can be seen that the plate contains
many stacking faults which are parallel to the basal plane of
the 9R structure. Stacking faults were almost always
observed when a bainite was imaged in a reflection of the
bainite itself. Note that the inner structure of dense faults is
also a feature of martensites. Using an image of a plate in an
upright position, we can measure the plate thickness. The
measured thickness in the present specimens was in the range
of 30–50 nm. Thus, bainitic precipitates were quite thin and
had a large aspect ratio, roughly 100 or more. It is also noted
that those plates have sharp edges. Measured wedge angles of
edges were in the range of 2–3�. The thickness of the left
plate of the pair shown in Fig. 1(a) was measured more
precisely by taking a series of pictures near in an upright
position. The thickness was determined as the smallest image
width of the plate among those pictures. We have obtained
the thickness 31 nm at the thickest part of the plate. This
value will be used in an analysis in a later section.

Figure 2 shows a pair of bainite plates observed in various
reflections. Interference fringes appear clearly. One plate
seems to have a shape of semi-circle, but the plates are cut by
the upper and lower surfaces of the specimen and terminated
by irregular steps at one end. The morphology is sketched in
Fig. 2(f). Two plates ABYX and CDYX (called Plate 1 and
Plate 2, respectively) are connected at the junction line XY.
The intersecting lines of the pair with the upper and lower
surfaces are AXC and BYD, respectively. Firstly, crystallo-
graphic features of these plates were examined by use of
diffraction patterns. The surface normal of the specimen in
the observed area was roughly parallel to [0 0 1] direction of
the bcc matrix. The habit planes of Plate 1 and Plate 2 were
identified as (2 12 11) and (2̄ 12 11), respectively. The
normals of these habit planes are denoted by H1 and H2

hereafter. The junction line XY is approximately parallel to
[0 1 1̄] direction. As shown later, the shear direction (S) of
these bainite plates is nearly parallel to this junction line. The
crystallographic orientations of these bainites are shown in
Fig. 3. In Fig. 2, it may be obvious that the fringe spacing is
different for each reflection. In (a), the spacing in Plate 1 is
closer than that in Plate 2. On the contrary, the spacing in
Plate 2 is closer in (b). In (c), the fringe spacing is almost the
same between two plates and seems to be closer than those in
(a) and (b). In (d), the spacing in two plates is rather similar to
that in (c). Fringes are hardly visible in (e). This is due to a
special direction of the reflection vector used, which was
almost perpendicular to the shear direction of the bainite. All
these features of pictures can be explained by an equation
given in a later section.

3. Analysis of Interference Fringes

In this section we show how interference fringes appearing
in the above photographs are related to the intrinsic nature of

Fig. 1 (a) A pair of bainitic plates connected at an obtuse angle, imaged in

a reflection of the matrix crystal, whose reflection indices are g = 1 1̄ 0.

Many interference fringes can be seen, which have a nature of equal-

thickness contours. (b) Bainitic plates with various shapes. In a plate at the

center, a reflection of the bainite is excited, in which many stacking faults,

appearing as dense parallel lines, can be seen in addition to interference

fringes.
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the bainitic transformation. Evidence will be presented on the
existence of a shear strain associated with a bainite plate. For
this purpose, we first give the explanation on the mechanism
how the fringes are produced. Previously, similar interfer-
ence fringes were observed in the case of wedge-shaped
martensites embedded in the matrix crystal.22,23) Their origin
has been attributed to the shear strain associated with the
martensitic transformation. A detailed explanation of the
fringe image has been given on the basis of the dynamical
theory of the electron diffraction in a previous paper.10) Here
we only describe the essential point of the explanation.

Figure 4 shows the geometry of observations in the
electron microscopy. A thin bainitic plate is inscribed in a foil
specimen. The plate has a wedge shape, of which the local
thickness measured perpendicularly to the habit plane is
denoted by t. In the figure, the lower surface of the wedge is
taken to be the habit plane. An important factor in the image
formation of electron micrographs is the phase change of an
electron wave during passing through a defective part, i.e.,
the wedge plate in the present case. We assume that the
matrix crystal is in an exact Bragg reflecting condition but
that the wedge plate is completely out of the condition. Then

Fig. 2 Paired bainitic plates, observed in various reflections (g). Two plates, Plate 1 and Plate 2, are connected at the junction line XY.

The approximate shear direction is denoted by S. (a) g= 1 1 0, (b) g= 1̄ 1 0, (c) g= 0 2 0, (d) g= 0 1 1̄, (e) g= 2̄ 0 0, and (f) a sketch of

the plates.
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the phase change (�) is given by the expression,

� ¼ 2�g:R ð1Þ

where g is the reflection vector and R is the displacement
vector of the upper interface of the plate with respect to the
lower interface. This equation may be recognized by an
analogy to the well-known case of stacking faults. We further
assume that the plate is associated with a shear-type
transformation strain, as in the case of martensites. Now
suppose that such a plate is newly produced in the matrix. To
make the new lattice, the crystal in the plate should be
deformed by shear with keeping the coherency at the
interfaces. In this process, any points on the upper interface
of the plate are displaced with respect to the lower. The lower
interface (the habit plane) is assumed to be stationary. The
shear direction lies in the habit plane. The displacement is
obviously given by

R ¼ t�S; ð2Þ

where S is a unit vector which is parallel to the shear
direction and � the magnitude of the shear strain. When the
phase change of eq. (1) amounts to zero or integral multiples
of 2�, no special contrast arises in the micrographic image.

When it is equal to � or odd multiples of �, then a dark fringe
appears. This is the essence of the formation mechanism of
the observed fringe system. Since the phase change as well as
the displacement increases linearly with the local thickness,
dark fringes appear periodically along the wedge plate. From
these considerations, it can be easily concluded that a dark
fringe appears at the point where the local thickness fulfills
the condition,

t ¼ ðn� 1=2Þt0; ð3Þ

where n is an integer (n ¼ 1, 2, 3, . . .) and the basic thickness
period t0 is given by

t0 ¼ 1=ð�jg:SjÞ ð4Þ

A more detailed deduction10) has shown that there is a small
additional term in the denominator, which depends on the
deviation from the exact Bragg condition. Since its magni-
tude is small in the case that the Bragg condition is well
fulfilled, it will be neglected in the following. Also there is a
small geometrical factor which is related to the plate
thickness measurement and which arises from the fact that
the upper and lower interfaces are not exactly parallel to each
other. Since the effect of this factor is small for thin wedges,
it will be neglected. From eq. (4), it may be recognized that
the direction as well as the magnitude of the reflection vector
affects the fringe spacing, which is proportional to t0. The
fringe spacing becomes closer for a reflection whose vector is
parallel to the shear direction. For example, the reflection
vector in Fig. 2(d) is almost parallel to the shear direction.
Therefore, the spacing is fairly close in the figure. The one in
Fig. 2(c) is deviated by about 45� from the shear direction but
has a large magnitude, so that the spacing in (c) is roughly
equal to that in (d). Similarly, other features of Fig. 2 can be
explained by eq. (4). The above explanation clearly shows
that these fringes have the nature of an equal-thickness
contour. Actually they can be used to measure the local
thickness of a plate with a fairly good precision, since the
value of t0 is small, typically 1–3 nm, as shown later. They
should be distinguished from another type of equal-thickness
fringes. The latter fringes, whose period corresponds to the
extinction distance of the electron wave, are commonly
observed in a wedge-shaped specimen.

The above explanation indicates that the appearance of the
interference fringe system is closely related to the existence
of the shear strain in the bainitic plate. Only a homogeneous
shear gives the linear dependence of the displacement on the
local thickness and produces regularly spaced fringes.
Therefore, the appearance of these fringes can be taken to
be evidence of the lattice shearing during the transformation.
Since in the present experiments such fringes have been
always observed when a bainitic plate is imaged in a matrix
reflection, we conclude that bainites are surely associated
with the transformation shear. This is the most important
conclusion of the present experiments. As mentioned above,
observed fringe systems are quite similar to those observed in
martensite plates. Therefore the lattice deformation in the
bainitic transformation may be similar to that in the
martensitic transformation. We next examine the shear strain
more quantitatively.

In order to obtain the direction and magnitude of the shear

Fig. 3 Stereographic representation of crystallographic directions in

observations of Fig. 2. The reflection vectors (g) used in the observations

are shown. The habit plane normals for Plate 1 and 2,H1 andH2, and the

shear directions for these plates, S1 and S2, are also shown.

Fig. 4 Geometry of the TEM observation in the present experiment. A

wedge-shaped bainitic plate is inscribed in a foil specimen. The plate is

homogeneously sheared, so that the upper surface of the plate is displaced

with respect to the lower in the directionR. The local thickness of the plate

(t) is measured perpendicularly to the habit plane (the lower surface).
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strain associated with a bainitic plate, we make use of eqs. (3)
and (4). First we try to find the shear direction only. For this
purpose, we do not need to measure the local thickness of a
wedge plate. We need three independent reflection vectors to
obtain three components of the vector S in eq. (4). Here we
take Plate 1 in Fig. 2 and choose three photographs, Figs.
2(a), (b) and (d). In order to obtain relative values of t0, we
counted the number of fringes lying between the peripheral
point B and a fixed point which was chosen in the vicinity of
the mid point between points X and Y. A caution was taken
for spurious fringes appearing outside the plate, which were
caused by a strong elastic strain around the plate tip.
Obtained numbers were n ¼ 8:5, 6.0 and 14.5 for reflections,
g= (1 1 0), (1̄ 1 0) and (0 1 1̄), respectively. The reciprocal of
(n� 1=2) corresponds to a relative value of t0. Substituting
these values in eq. (4) and solving the resultant simultaneous
equations, we obtained the direction cosines of the shear
vector as S= (0.125, 0.676,�0:726). This direction is shown
in Fig. 3 (denoted by S1). The shear direction of Plate 2 has
been deduced by taking into account the twin relation
between these plates. The direction is denoted by S2 in Fig. 3.
This direction was found to be consistent with the observed
spacings of interference fringes in Fig. 2. As far as the present
authors are aware, there is no report on the experimental
measurement of the shear direction of bainites so far. We
compare this result with the corresponding one for marten-
sites in copper alloys having a similar composition. There are
several results obtained experimentally24) or theoretically.25)

A theoretical calculation is performed by use of the so-called
phenomenological theory of martensitic transformation.
These results are in a fairly good agreement with each other.
Here we take the theoretical value in Cu–31.6 at%Zn–
4.5 at%Al alloy, which is S = (0.1410, 0.6485, �0:7481)
for the same variant as Plate 1. It is to be noted that
calculations by the phenomenological theory employ the data
of lattice parameters, so that calculated results should be the
same for those alloys having the same lattice parameters. In
the present case, differences in the lattice parameters between
two Cu–Zn–Al alloys used are negligible. The deviation of
the shear direction (S1) for bainites from this direction for
martensites is about 2.1� in arc. Therefore it is concluded that
the shear direction of bainites agrees quite well with the one
of martensites.

Next we try to find the magnitude of the shear strain. For
this analysis, we make use of Fig. 1(a), in which the thickness
of the bainitic plate was measured to be 31 nm at the thickest
part, as mentioned in a previous section. We have judged that
the number of fringes between the plate tip and the thickest
point is about 14.5. Therefore we obtained t0 ¼ 2:21 nm from
eq. (3). We use the shear direction obtained above, which
corresponds to S = (0.676, �0:125, �0:726) for the bainite
variant in hand. We also need the lattice parameter of the
matrix crystal, which has been reported25) to be
a ¼ 0:294 nm. Substituting these values and the reflection
vector g ¼ ð1=aÞ½1;�1; 0� into eq. (4), we obtained
� ¼ 0:166. Again we compare this value with the corre-
sponding one of martensites in a Cu–Zn–Al alloy. The
theoretical value of the shear strain is � ¼ 0:198 in Cu–
31.6 at%Zn–4.5 at%Al alloy.25) Comparing these values, it
may be judged that the magnitude of the shear strain obtained

for bainites is in a reasonable agreement with the corre-
sponding value for martensites, if we take into account the
approximate nature of the present analysis. Thus, in copper
alloys, bainites have similarity with martensites on many
aspects, such as the crystallographic structure, the plate shape
with {12 11 2} habit plane, the internal defective structure
and in addition the associated transformation strain.

4. An Atomic Model of the Transformation Mechanism

As shown in the above, experimental evidence has been
obtained on the conclusion that bainitic precipitates are
associated with a transformation strain which is of the shear
type. On the other hand, there is plenty of evidence for the
fact that the rate of the bainitic transformation is controlled
by the diffusion of solute atoms.8,14–20) Now, we discuss how
these two contributions, shear and diffusion, are incorporated
in a single transformation mechanism. It will be shown that
these two factors are not conflicting with each other but that
they are compatible at the atomic level. A rough sketch of the
present model was previously presented by one of the present
authors.26) Here the model will be given in a more detailed
form.

Since any plastic shear deformation can be produced by
movements of dislocations, a bainitic precipitate should be
represented by an array of dislocations, which is schemati-
cally shown in Fig. 5. A precipitate in the matrix is depicted
as an ellipsoid, whose broad face is parallel to the habit plane
of the precipitate, though actual bainitic plates have a much
flatter shape. As depicted by arrows in the figure, the
invariant plane of the associated shear is parallel to the habit
plane. To visualize dislocations, the ellipsoid is sliced by
layers parallel to the habit plane. Each layer is bounded by a
dislocation loop, of which the Burgers vector points to the
shear direction. The motion of these dislocations (so-called
transformation dislocations) makes a new lattice by shearing
the matrix lattice. These dislocation should be a kind of
partial dislocations, since the motion of a complete disloca-
tion does not produce a new structure but leaves the lattice
unchanged. The magnitude of the Burgers vector is given by

b ¼ �d; ð5Þ

where � is the magnitude of the shear strain and d the layer
thickness. Although the habit plane and the direction and
magnitude of the shear strain are unique for the bainitic

Fig. 5 A schematic illustration of an ellipsoidal precipitate (bainite)

created in the matrix. The lattice in the ellipsoid was transformed by

shearing from the matrix lattice. This transformation can be modeled by an

array of transformation dislocations. Layers having the thickness d are

parallel to the habit plane of the bainite.
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transformation in a particular alloy, there is an arbitrariness
on the selection of the layer thickness. However, the selection
does not affect the conclusion of the following arguments. It
is also to be noted that the core structure of those dislocations
is rather complicated, since the transformation shear is
composed of a combination of the lattice transformation (so-
called Bain distortion) and the lattice invariant shear in the
case of bainites or martensites in copper alloys. Even the
atomic arrangements in the habit plane, i.e. {12 11 2} plane,
are not so simple. However, in the present analysis we only
needs the transformation shear (so-called the macroscopic
shear) as a whole and does not need to consider any details.

Now we examine how the motion of these dislocations is
controlled by the diffusion of component atoms in the alloy.
For simplicity, we take a binary alloy, in which the average
concentration of solute atoms is x0. In the situation shown in
Fig. 5, we assume that the equilibrium solute concentrations
of � phase (bainite) and � phase (matrix) are x� and x�,
respectively. In the case of copper alloys, the relation,
x� < x0 < x�, holds. Therefore, it is necessary for the
precipitate to grow, or for a transformation dislocation to
move, that some solute atoms flow out from (or some solvent
atoms flow into) the precipitate. Since solute atoms flown out
from the precipitate stay in its vicinity for a while, the solute
concentration just outside of the precipitate may be rather
high, probably near to the equilibrium value (x�). On the
other hand it has a lower value (x0) in the distance. Therefore,
a diffusional flow of solute atoms to the distance occurs
naturally. This flow should control the growth rate, as in the
genaral case of the precipitate growth.

In order to examine the situation more closely, a part of the
ellipsoid is illustrated again in Fig. 6, in which the atomic
arrangements around a transformation dislocation lying in an
interface are schematically shown. On the left and the right of
the dislocation, there are � phase and � phase, respectively, in
the same layer. If each side of the dislocation has the
respective equilibrium concentration of solute atoms, the
dislocation should be stationary. If on the other hand there is
any deviation from the equilibrium on one side, the
dislocation would be attracted toward that side, since the

deviation always gives rise to an excess free energy. For
example, suppose that the dislocation moves suddenly to the
left in the figure without any atomic diffusion. Then it creates
an area of � phase having a concentration lower than the
equilibrium (i.e., x� instead of x�). This area should exert a
force on the dislocation to pull back to the original position.
This situation is rather similar to the surface tension
associated with a stacking fault, of which the excess energy
per unit area corresponds to the force on the unit length of a
peripheral dislocation. In the actual situation, there are
always atomic flows of solute atoms from the vicinity of the
dislocation to the distance, as mentioned above. Therefore, a
transformation dislocation perceives a force from the
adjacent � phase region, where the solute atom concentration
is incessantly changing. The � phase region also can exert a
force on the dislocation if there are any concentration
changes. These situations can be summarized in the follow-
ing expression, where the resultant force f (to the right) on
the unit length of the dislocation is given. That is,

f ¼ dð�G� ��G�Þ; ð6Þ

where �G� and �G� are the excess free energies per unit
volume of the layer on the left and on the right, respectively.
This expression has been deduced rather intuitively by the
analogy to the case of stacking faults. Maybe, a more detailed
discussion based on the thermodynamics is necessary for
rigorous deduction of this force. There may be some
difficulties for the actual evaluation of eq. (6) because of
the non-linear relation between the concentration and the free
energy. Also there remains another problem to choose the
width of the area in which the concentration is evaluated. For
the actual dislocation motion, we must take into consid-
eration another force, a frictional force due to the basic nature
of the crystal lattice, which corresponds to Peierls force for
an ordinary dislocation. The evaluation of this force may be
quite difficult because it is related to two lattices. Even
though there are these difficulties in evaluating the actual
force, it may be recognized that this equation has a feature
that can explain the expected control action of the atomic
diffusion on the dislocation motion. This is the essence of the
present model on the atomic mechanism of the diffusion-
controlled dislocation motion.

We further examine the above model more closely in
several points. First we note the fact that all the lattice points
are conserved in the course of a dislocation motion (we here
consider a glide motion only). Obviously, any dislocation
motions never create nor eliminate a lattice point. Therefore,
we are safe to say that the correspondence between the parent
and transformed lattices exists on all lattice points, as far as
we consider a dislocation process of transformation. Another
noticeable point of the dislocation model is the interaction
between dislocations. Since all dislocations have the same
Burgers vector, as shown in eq. (5), they are repulsive with
each other. Therefore, an ellipsoid having transformation
dislocations is necessarily flattened to a thin plate with sharp
edges. This feature is in accord with present observations of
bainitic precipitates. It is to be noted that the plate shape itself
exerts influence on its growth rate, since the growth rate is
inversely proportional to the radius of curvature of the plate
tip.27) In copper alloys, there are other kinds of precipitates

Fig. 6 An atomic view of the interface between a bainite and the matrix

crystal. The interface (denoted by a thick line) has a step at the center of

the figure, where a transformation dislocation exists, whose glide plane is

parallel to XX0 and whose Burgers vector is denoted by b. The vertical

arrows represent diffusional atomic flows.
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which are produced at a higher temperature. They have a
blocky shape instead of a plate.28) This shape suggests that
they are created not by a dislocation mechanism but by a
different one. One reason for the fact that bainites becomes
predominant over other precipitates at relatively low temper-
atures should be attributed to its high growth rate.

Next we look at lattice sites responsible for the atomic
diffusion. Taking into account the randomness of the atomic
migration, it may be evident that any lattice points in the
interface between two phases can be possible sites for flow-in
or flow-out of solute atoms. Vertical arrows in Fig. 6
indicates these flows. Thus, the concentration of solute atoms
in a precipitate is to be determined by an average of atomic
flows over a fairly broad area. On the other hand, atomic
movements associated with the creation of a new lattice (i.e.
shearing movements) occur exclusively at the dislocation
core. Therefore, atomic movements to bring about the
composition change are obviously independent from those
associated with the lattice transformation. In other words,
two processes, the atomic diffusion and the lattice shearing,
are compatible with each other by nature. This view does not
seem to be fully accepted in several previous papers, as
shown in a later section.

The present model does not contain the thickening process
of plates. For this process, the nucleation of a dislocation loop
on a broad interface of a precipitate is necessary. The
nucleation may require a greater deviation from the equili-
brium concentration in the vicinity of the interface in
comparison with the case of dislocation motion. We need
more elaborated discussions on this process, which are
postponed to a later publication.

5. Discussion: Comparison with Other Models

There has been a long standing debate on the mechanism
of the bainitic transformation, as described already. The
manner of weighing the two mechanisms, lattice shearing
process and diffusional reconstruction process, to the trans-
formation was the main subject of the debate.3–6) As shown in
the previous section, the view of the present paper is such that
these mechanisms are compatible with each other and they
are combined intimately in a single transformation mecha-
nism. This is in a sharp contrast with views in the past.
Therefore, from the present view point, most of previous
models are somewhat improbable. In the following, we show
how the present model is different from previous ones.
Discussions will be confined mainly to the transformation
mechanism in copper alloys.

The first systematic study on the growth of plate
precipitates (bainites) in copper alloys has been done by
Garwood.29,30) Based upon observations of crystallographic
similarities between them and martensites in Cu–Zn alloy, he
recognized the important role of shear in the growth. By
noting the slow growth rate of bainites in comparison with
martensites, he also concluded that the growth process is
associated with the atomic diffusion. By that time Ko and
Cottrell1) had presented a model of the transformation
mechanism for bainites in ferrous alloys, in which the lattice
shear to make the ferrite lattice from the austenite was
assumed to be controlled by the diffusion of interstitial

carbon atoms. Garwood did not follow this model, but
presented a two-stage model, because there was an influential
view by Christian2) that shear and diffusion processes may
not be compatible with each other in substitutional alloys. It
has been argued that in substitutional alloys a diffusive flow
of atoms could destroy the correspondence between the
parent and product lattices. Taking into account this
incompatibility, in the two-stage model, it has been assumed
that at the first stage the martensitic shear makes the new
lattice and at the subsequent stage the diffusion of substitu-
tional atoms brings about a composition change. In actual
happening, the outer rim of a plate expands by a shear process
and then the diffusional composition change follows in the
bulk. This model is in contrast with the present model, in
which the shear process as represented by a dislocation
motion is taken to be compatible with the diffusion process
even in substitutional alloys.

Several later papers seems to have been influenced by this
two-stage model. There are variations of the two-stage
model,21,31–34) in which the shear stage is separated from the
diffusion stage in a time sequence. These models now seem
to be somewhat inadequate in the light of recent experimental
results. It has been shown by the analytical electron micros-
copy that a composition change to the equilibrium value is
attained from the earliest stage of the transformation in noble
metal alloys.14–20) This indicates that the bainitic trans-
formation is a simultaneous process of the structural change
and the compositional change. There is another type of model
in which for ferrous alloys the shear and the diffusion is
coupled in a single mechanism.35,36) In the model, however, it
was assumed that the concentration change is suppressed to
some extent because of a rapid transformation. This
assumption is obviously inadequate for the case of bainites
in noble metal alloys. There are some other suggestions in
which the coupling of the shear and the diffusion from the
earliest stage of the transformation is emphasized.37–39)

However, the detailed atomic process has not been presented
yet.

Although the models mentioned above take the shear
process as the lattice transformation mechanism, there have
been a few proposals which do not accept the shear process.
Aaronson and coworkers have published several review
articles on the plate-precipitate (bainite) formation.4–6) In one
of them,4) two growth mechanisms have been defined as
follows: ‘‘At atomic level, diffusional growth is described as
individual, poorly coordinated, thermally activated jumps
occurring in the manner of biased random walk, whereas
growth by shear is taken to be tightly coordinated glide of
atoms to sites in the product phase which are predestined to
within the radius of a shuffle’’. Thus, in this definition, these
two mechanisms were supposed to be incompatible with each
other. Such an alternative view is quite improbable from the
present view point, as mentioned already. They further
discussed requirements for distinguishing the shear mecha-
nism from the diffusional one in substitutional alloys. The
requirements included ‘‘the absence of a composition change
during growth’’. Applying this requirement to the case of
plate precipitates in Cu–Zn alloy, they denied the shear
process as the transformation mechanism.5) This reasoning is
not legitimate from the view point of the present paper,

1780 K. Marukawa and M. Tabuchi



because the compositional change can be compatible with the
shear process in the present model.

In several papers,4–6,40–43) ledges in interfaces between a
precipitate and the matrix are invoked as the growth front of
the precipitate. They have been taken as sites where both the
structure change and the composition change occur. This
diffusion-controlled ledge mechanism has been often con-
trasted with the shear mechanism. However, descriptions
have not been quite clear on the question whether ledges are
associated with a stress field or not. In the ledge mechanism,
it is commonly supposed that atomic sites responsible for the
composition change are restricted only to sites in ledges. This
supposition is rather questionable, as is described below.

Recently, Howe44) presented a new version of the ledge
mechanism for the case of fcc/hcp transformation in Al–Ag
alloy. In this model, a Shockley partial dislocation is taken as
the ledge. Since the motion of a dislocation necessarily brings
about shear deformation, this model is obviously different
from other ledge models, in which lattice shearing is not
admitted in the transformation process. At first sight this
model is quite similar to the dislocation model presented in a
previous section. However, there are several differences
between these models. In this model, a partial dislocation is
considered in a most simple case of hcp/fcc transformation.
In the model presented in a previous section, transformation
dislocations are assumed in a more general case, where the
slip plane is not a simple lattice plane. More importantly, this
model as well as other ledge models assumes that the
composition change occurs only at sites in a ledge, or
precisely those at a kink of a dislocation. According to this
model, if an atom of an appropriate species happens to
migrate to neighboring sites of a kink, then the kink moves
and takes the atom into the precipitate. Thus the composi-
tional change and the structural change occur strictly
simultaneously. However, such a restriction on sites seems
to impose a difficulty on the mechanism of composition
adjustment of a precipitate. In this model, the adjusting
mechanism is fully attributed to a narrow channel of a kink.
That is, a kink would be supposed to have a special ability to
judge whether a nearby atom of one species should be taken
into the precipitate or not. Thus the site restriction seems to
be too strict. This restriction may be related to the supposition
that the precipitate is taken as a homogeneous continuum
having a definite concentration. If we take into account the
discrete nature of atomic arrangements instead of a contin-
uum, we would necessarily confront local fluctuations of the
concentration. For example, we cannot define the local
composition for a single kink, nor for small number of atoms.
In general, some local fluctuations should be always admitted
in a thermodynamical situation and quantities such as the
concentration can be defined only by averaging over numbers
of atoms. In contrast to those ledge models, the model shown
in the previous section seems more natural, in which the local
concentration or the local free energy is defined by averaging
over a wider area in the vicinity of a transformation
dislocation and atomic flows are necessarily expected to
occur at numeral sites in that area. Thus, the formulation
given in the previous section seems to have a more plausible
feature as the true mechanism.

6. Conclusions

(1) A new technique utilizing interference fringes in
transmission electron micrographs was applied to
examine the nature of the transformation strain asso-
ciated with bainitic plates in a Cu–Zn–Al alloy. The
consideration on the origin of these fringes indicates
that they are closely related to the shear-type trans-
formation strain. Therefore, the appearance of these
fringes was taken to be evidence of the existence of a
shear strain associated with bainites.

(2) From the analysis on the spacing of interference fringes,
the direction and magnitude of the shear strain
associated with bainites were deduced. We obtained
the results that the unit vector of the shear direction is S
= (0.125, 0.676, �0:726) and the magnitude of the
shear strain is � ¼ 0:166. These values reasonably
agree with those of the shear strain associated with
martensites in the same alloy.

(3) A new model on the mechanism of the bainitic
transformation has been presented, in which the
dislocation motion to bring about the lattice trans-
formation is controlled by the atomic diffusion through
a local concentration change, that is, a local change in
the free energy. The new model consistently explains
both of existence of the shear-type transformation strain
and the diffusion-control nature of the transformation.

(4) The new model was compared with various models
presented so far. Most of previous models contains
some improbable points because they are based on the
inadequate supposition that the shear process and the
diffusion process are incompatible with each other in
the transformation mechanism.
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