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In order to determine the band gap and quasiparticle energies of lithium chloride crystal accurately, we employ the state-of-the-art GW
approximation on the basis of many-body-perturbation-theory at the ab initio level. Our method is based on the all-electron mixed-basis
approach. We use the 2� 2� 2 supercell in which four lithium and four chlorine atoms exist. We demonstrate the importance of the q point
sampling for the momentum transfer q of the Coulomb matrix elements. The result for the direct band gap at the � point compares well with
experiment and the previous calculations.
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1. Introduction

Recently the first principles methods on the basis of the
density functional theory (DFT)1) and the local density
approximation (LDA)2) have been extensively used in the
solid state physics. They are capable to predict correctly the
ground state properties of variety of materials. In spite of this
great success, the LDA fails to predict correctly the energy
band gap of insulators. It underestimates typically 30 � 50%
of the experimental band gap which is obtained by the
photoemission spectroscopy.

In order to detemine correctly the band gap of insulators, it
is necessary to go beyond the framework of the DFT. In the
case of alkali chloride (or fluoride) crystals, Erwin and Lin3)

attempted to include the self-interaction correction in the
band structure calculation. They determined the band gap of
lithium chloride to be 10.0 eV. A more sophisticated modern
approach is the so-called GW approximation (GWA), which
is based on the many-body-perturbation-theory at the ab
initio level.4–7) So far, there have been many efforts in the
application of the GWA, for example, to the semiconductors,
surfaces and clusters.8) Among them, Hybertsen and Louie5)

and Shirley9) determined the band gap of lithium chloride
crystal to be 9.1 eV and 9.2 eV, which are in good agreement
with the experimental value of 9.4 eV.10) Their method is
based on the pseudopotential approach.

The aim of the present calculation is to adapt an ab initio
all-electron GWA calculation to the crystal system. We will
determine the band gap and quasiparticle energies of lithium
chloride and compare the result with the previous calcula-
tions using the pseudopotential approach. Our all-electron
GW code is based on the all-electron mixed-basis approach.
In this approach, each one-particle wave function is ex-
pressed in a linear combination of plane waves (PWs) and
atomic orbitals (AOs). The AOs are generated by a modified
Herman-Skilman’s code11) which uses logarithmic mesh in
radial direction and by smoothly cutting the tail within the
non-overlapping atomic sphere. This approach can describe
well both the spatially extended states and the localized states
with relatively small number or basis functions.12–15) So far,
we applied successfully this all-electron GW code to the
calculation of several alkali-metal clusters16,17) and small
silicon clusters.18) In the present work, we newly implement

the q point sampling in our all-electron GW code as will be
described below in detail. Then we perform a supercell GWA
calculation for lithium chloride crystal.

2. Methodology

Our formulation of the ab initio all-electron GWA is
essentially based on the original paper by Hybertsen and
Louie4,5) who used the pseudopotential approach. We start
from the calculation at the LDA level, and determine the state
functions jnki and the energy eigenvalues "LDAnk . In the GWA,
the quasiparticle energies Enk can be obtained by solving the
Dyson equation,

ðT þ Vnuc þ VHÞjnki þ
Z

dr0�ðr; r0;EnkÞjnki ¼ Enkjnki;

ð1Þ

perturbatively to the first order. Here, T , Vnuc, VH, and � are
the kinetic energy operator, the nucleus Coulomb potential,
Hartree potential and the self-energy operator. In the GWA,
the self-energy operator is approximated in a form

�ðr; r0;!Þ ¼
i

2�

Z 1

�1
d!0Gðr; r0;!þ !0ÞWðr; r0;!0Þei�!

0
;

ð2Þ
where G is the one-particle Green’s function in the LDA and
W is the dynamically screend Coulomb interaction within the
random phase approximation (RPA),19,20) and � is a positive
infinitesimal number. The dynamically screened interaction
in Fourier space is related to the dielectric matrix by

WGG0 ðq; !Þ ¼ ½"�1�GG0 ðq; !ÞvðqþG0Þ; ð3Þ

where vðqþGÞ ¼ 4�=�jqþGj2 is the Coulomb potential
in Fourier space (� is the volume of the unit cell), and
"GG0 ðq; !Þ is the dielectric matrix defined by

"GG0 ðq; !Þ ¼ �GG0 � vðqþGÞPGG0 ðq; !Þ; ð4Þ

with the polarizability function in the RPA,

PGG0 ðq; ! ¼ 0Þ

¼
X
nn1k

hnkje�iðqþGÞ�rjn1kþ qihn1kþ qjeiðqþG0Þ�r0 jnki
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�
f ð"LDAn1kþqÞ � f ð"LDAnk Þ

"LDAn1kþq � "LDAnk

; ð5Þ

where G and G0 are reciprocal lattice vectors, and f ð"Þ
denotes the Fermi-Dirac distribution function. The matrix
elemtents in the numerator involve the intermediate states
jn1kþ qi. Since we use a large supercell, we treat only the �
point (k ¼ 0) contribution. But we evaluate this polarizabil-
ity function for many different q points. This is because there
is a singularity in the small momentum transfer limit (q ! 0)
of the Coulomb interaction appearing in the matrix elements
of the self-energy operator.

The self-energy operator � can be divided into two parts:
one is the Fock exchange part �xðr; r0Þ and the other is the
correlation part �cðr; r0;EÞ. The expectation values of the
Fock exchange contribution are given by

�x;nk ¼ hnkj�xðr; r0Þjnki

¼
Xocc
n1

X
qG

hnkjeiðqþGÞ�rjn1k� qi

� hn1k� qje�iðqþGÞ�r0 jnkivðqþGÞ; ð6Þ

while for the correlation part of the self-energy, the
generalized plasmon-pole model5) is used to bypass the
calculation of the ! dependence of the dielectric matrices and
the !0-integration in eq. (2). Then the expectation values of
the correlation part are given by

�c;nkðEÞ ¼ hnkj�cðr; r0;EÞjnki

¼
Xocc
n1

X
qGG0

hnkjeiðqþGÞ�rjn1k� qi

� hn1k� qje�iðqþG0Þ�r0 jnki

�
1

2

�2
GG0 ðqÞ

~!!GG0 ðqÞ½E � "LDAn1k�q þ ~!!GG0 ðqÞ�
vðqþG0Þ

þ
Xemp

n1

X
qGG0

hnkjeiðqþGÞ�rjn1k� qi

� hn1k� qje�iðqþG0Þ�r0 jnki

�
1

2

�2
GG0 ðqÞ

~!!GG0 ðqÞ½E � "LDAn1k�q � ~!!GG0 ðqÞ�
vðqþG0Þ;

ð7Þ

where ~!!GG0 and �2
GG0 ðqÞ are the same functions as those

defined in the paper by Hybertsen and Louie.5) The
summations with respect to n1 in eqs. (6) and (7) run
occupied or empty states only, according to the symbol occ or
emp. The matrix elemtents in the numerator involve the
intermediate states jn1k� qi. For k ¼ 0, these states can be
constructed by imposing the inversion operation onto the
states jn1kþ qi which are needed in the evaluation of the
polarizability [see eq. (5)]. Here we assume just k ¼ 0 in our
supercell calculation, but the X point can be discussed as well
as the � point because of the folding of the first Brillouin
zone. On the other hand, we perform q point sampling
explicitly in evaluating eqs. (6) and (7).

Finally the quasiparticle energies are obtained in terms of
the first-order perturbation theory as

EGWA
nk � "LDAnk þ

1

1� ð@�ð!Þ=@!Þ"LDA
nk

� hnkj�ð"LDAnk Þ � �LDA
xc jnki;

ð8Þ

where the denomenator in the second term is necessary to use
the LDA eignvalues "LDAnk as the argument of the self-energy
operator in the numerator.

3. Results

In the present calculation, we assume the 2� 2� 2 simple
cubic supercell of the LiCl crystal with the edge length of
0.514 nm, and use 24 numerical AOs and 1419 PWs
corresponding to 279 eV (20.5 Ry) cutoff energy. For the
evaluation of PGG0 ðq; ! ¼ 0Þ and�c;nk, 500 states are used in
the summation over n1 in eqs. (5) and (7), and 2109 GðG0Þ
corresponding to 354 eV (26Ry) cutoff energy are used. On
the other hand, in the calculation of �x;nk, 24405 G
corresponding to 1845 eV (136Ry) cutoff energy are used
to take into account correctly the core contribution.

We have first compaired the � point only calculation and
the calculation using 4 special points at the LDA level, and
confirmed that there is only negligible difference between
their results (only 0.01 eV difference in the LDA gap).
Therefore we perform � point only calculation also at the
GWA level. On the other hand, for the calculation of
"GG0 ðq; 0Þ, �x;nk and �c;nkð"LDAnk Þ, we use 20 q points in the
irreducible wedge of the Brillouine zone. Table 1 shows the

Table 1 The q dependence of the (exchange) contributions to�x;nk and the

(correlation) contributions to �c;nkð"LDAnk Þ in eqs. (6) and (7) at the top of

the valence band (�15v) and at the bottom of the conduction band (�1c).

The values are given in units of eV. The notation ðl;m; nÞ=8 indicates the q
point, ð�=aÞðl=8;m=8; n=8Þ, inside the 1/48 irreducible wedge of the

simple-cubic first Brillouine zone.

contribution to

�x,nk

contribution to

�c,nkð"LDAnk Þ

�15v �1c �15v �1c

(1,1,1)/8 �82:41 7.91 �0:39 �1:72

(3,3,3)/8 �21:63 �6:78 �0:42 �1:81

(3,1,1)/8 �32:67 �4:35 �0:40 �1:77

(3,3,1)/8 �24:82 �6:13 �0:40 �1:80

(5,5,5)/8 �16:54 �7:68 �0:49 �1:82

(7,7,7)/8 �14:64 �7:96 �0:60 �1:63

(7,5,5)/8 �15:71 �7:80 �0:52 �1:79

(7,7,5)/8 �15:10 �7:89 �0:56 �1:72

(5,1,1)/8 �21:58 �6:87 �0:42 �1:87

(7,1,1)/8 �18:06 �7:49 �0:40 �2:02

(5,3,3)/8 �18:72 �7:35 �0:44 �1:85

(7,3,3)/8 �16:93 �7:65 �0:46 �1:93

(5,3,1)/8 �19:82 �7:18 �0:42 �1:86

(7,3,1)/8 �17:41 �7:58 �0:43 �1:98

(5,5,1)/8 �17:90 �7:51 �0:44 �1:87

(5,5,3)/8 �17:35 �7:57 �0:45 �1:84

(7,7,1)/8 �15:60 �7:83 �0:55 �1:86

(7,7,3)/8 �15:43 �7:85 �0:55 �1:81

(7,5,1)/8 �16:49 �7:71 �0:48 �1:91

(7,5,3)/8 �16:20 �7:74 �0:49 �1:86
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q dependence of the (exchange) contributions to �x;nk and
the (correlation) contributions to �c;nkð"LDAnk Þ in eqs. (6) and
(7) (the expectation values of the self-energy operator) at the
valence band top (�15v) and the conduction band bottom
(�1c). There is a large exchange contribution in the vicinity of
the � point, (0,0,0), although no such large contribution
appears in the correlation term (see, for example, the
discussion given in Appendix B in Ref. 5). We have
confirmed that 20 q points are required in the q point
sampling.

Table 2 lists the separate contributions to the GW
quasiparticle energies for several valence and conduction
levels at the � and X points of lithium chloride, as well as the
final result EGWA

nk calculated with eq. (8). The listed con-
tributions, "LDAnk , �LDA

xc;nk, �x;nk, and �c;nkð"LDAnk Þ represent the
expectation values of, respectively, the LDA (Kohn-Sham)
Hamiltonian, the LDA exchange-correlation potential, and
the exchange (�x) and correlation (�c) parts of the self-
energy. There is no meaning in the energy zero of EGWA

nk as
well as "LDAnk because the energy zero is not determined
correctly by the standard crystal calculation at the LDA level.
The level symbols, �15v and �1c, denote the top of the valence
band and the bottom of the conduction band, respectively.
The estimated band gap between these two levels is 10.2 eV.
This value is slightly larger than but not much different from
the experimental value of 9.4 eV, and the previous GW
calculations5,9) using the pseudopotential approach (9.1-
2 eV).

4. Concluding Remarks

In this paper, we have newly implemented the q point
sampling in the all-electron mixed-basis GW code and

applied it to LiCl crystal. We have investigated the q
dependence of the exchange and correlation contributions to
the self-energy, and demonstrated explicitly that the impor-
tance of the q point sampling. We have presented the
quasiparticle energies at several levels close to the band gap.
The resulting direct band gap between �15v and �1c is
compared successfully with the experimental value and the
values given in the previous calculations based on the GWA
pseudopotential approach. This indicates that the present
approach works well for insulators such as LiCl. We are now
planning to extend the present calculation to a different kind
of insulators.
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Table 2 The LDA eigenvalues "LDAnk and the GWA quasiparticle energies

EGWA
nk estimated at the levels in the vicinity of the band gap of lithium

chloride crystal (in units of eV). Contributions to the quasiparticle energies

are also shown: �LDA
xc;nk ¼ hnkj�LDA

xc jnki, �x;nk ¼ hnkj�xjnki, and

�c;nkð"LDAnk Þ ¼ hnkj�cð"LDAnk Þjnki are the expectation values of, respec-

tively, the LDA exchange-correlation potential, the exchange part [eq. (6)]

and the correlation part [eq. (7)] of the self-energy operator�. There is no

special meaning in the energy zero of "LDAnk and EGWA
nk , i.e., these values

may contain arbitrary shift by a constant value.

"LDAnk �LDA
xc;nk �x;nk �c;nð"LDAnk Þ EGWA

nk

�1c 7.98 �11:31 �7:10 �1:86 10.07

�15v 1.84 �17:06 �19:44 �0:46 �0:17

X0
5v 0.70 �15:68 �18:14 �0:45 �1:98

X0
4v �1:16 �13:71 �16:33 �0:49 �3:99
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