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The elastic stiffness coefficients of single crystal AlLi with cubic NaTl (B32) structure were calculated at 0K from the first principles. The
obtained elastic stiffness coefficients, in units of GPa, were c11 ¼ 66:9, c12 ¼ 38:2 and c44 ¼ 51:7. Then the bulk modulus, Young’s modulus,
shear modulus and Poison’s ratio were estimated for polycrystalline AlLi from the elastic stiffness coefficients. The Young’s modulus for single
crystal AlLi was the highest in the h111i direction. The formation of the sp3-like bond connecting the nearest-neighbor Al atoms was confirmed
from the charge density distribution. The elastic anisotropy of AlLi was compared with those of the sp3 bonded semiconductors such as Si and
GaAs.
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1. Introduction

AlLi is an intermetallic compound with cubic NaTl (B32)
structure (space group Fd �33m No. 227). Its lattice parameter
has been determined by several researchers.1–4) The structure
of AlLi is composed of two sublattices, both Al and Li
forming a diamond lattice and interpenetrating each other. If
Li gives up its single valence electron and the charge is
transferred from Li to more electronegative Al, Al has four
electrons to form sp3 bonds.5,6) A number of studies have
been reported on the electronic structure of AlLi because of
this peculiar bonding property.7–10) AlLi is also known as the
precipitate of stable � phase in Al–Li alloys. In Al–Li alloys
metastable �0 (Al3Li) phase nucleates during quenching or
aging on the grain boundaries or homogenously.11–13)

Metastable �0 phase plays a significant role in the precip-
itation hardening.11–13) As aging proceeds, more and more
precipitations of new �0 phases with coarsening of existing �0

phase nuclei increase strength.11–13) After continuing aging,
or increase in aging temperature, � phase nucleates on grain
boundaries or already existing �0 phases with dissolution of �0

phases.11–13) Hence, the first-principles approaches for the
study of phase transformation from metastable �0 phase to
stable � phase have been of special interest.14–18) Large �
phases on grain boundaries cause the marked problem of
grain boundary fracture in Al–Li alloys.19,20) The elastic
constants of the precipitate is useful to predict fracture
toughness of alloys.21–23) Hence, it is important to determine
elastic constants of AlLi from the viewpoint of material
engineering.

The first-principles calculations based on the density
functional theory (DFT) have been remarkably successful
in the reproducing and explaining a wide variety of materials
phenomena.10,14–18,24–41) The elastic constants have been
calculated from the first principles for many alloys and
intermetallic compounds.24–27,35–41) For examples, Masuda-
Jindo and Terakura calculated the bulk moduli of Al–Li solid
solutions against the solute concentration of Li and Mehl
calculated the pressure dependence of the elastic stiffness

coefficients of Al3Li.
24,26) In the case of AlLi, its bulk

modulus has been calculated by several researchers theoret-
ically,10,16–18) and the bulk modulus, Young’s modulus, shear
modulus and Poison’s ration were measured on a polycrystal-
line specimen experimentally.3) However, the elastic stiffness
coefficients of single crystal AlLi have been not investigated
both theoretically and experimentally. In the present paper,
the elastic stiffness coefficients of single crystal AlLi were
determined at 0K from the first principles. The elastic moduli
such as bulk modulus and Young’s modulus were estimated
for polycrystalline AlLi using the Voigt–Reuss–Hill averag-
ing scheme from the elastic stiffness coefficients.

2. Calculation Methods

The elastic constants determine the stiffness of a crystal
against an externally applied strain. For small deformations a
linear dependence of the stress on the strain is observed
(Hooke’s law). Hooke’s law can be generalized to account
for multiaxial loading conditions as well as the elastic
anisotropy. For the cubic structure such as AlLi, the number
of independent components of the elastic stiffness tensor is
three (c11, c12 and c44) and the generalized Hooke’s law can
be written as
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where �i j and "i j (i; j ¼ x; y; z) are the stress and strain,
respectively. The relationship between the stress and strain is
determined by the first-principles calculations. The elastic
stiffness coefficients are then obtained from the slope of the
stress versus strain. A set of two independent calculations has
been performed for AlLi for the following strain conditions:
(1) The first condition: an uniaxial strain "xx with "yy ¼

"zz ¼ "xy ¼ "yz ¼ "zx ¼ 0. c11 is determined from the*Graduate Student, Osaka Prefecture University
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relationship between �xx and "xx. c12 is determined from
the relationship between �yy ¼ �zz and "xx.

(2) The second condition: a pure shear strain "xy with
"xx ¼ "yy ¼ "zz ¼ "yz ¼ "zx ¼ 0. c44 is determined from
the relationship between �xy and "xy.

The first-principles calculations presented in this paper
were performed using the Cambridge Serial Total-Energy
Package (CASTEP).42) The CASTEP is an ab initio pseudo-
potential method code for the solution of the electronic
ground state of periodic systems with the wave functions
expanded in plane wave basis using a technique based on the
density functional theory (DFT).43,44) The electronic ex-
change-correlation energy was given by the generalized
gradient approximation (GGA) (PW91) of Perdew et al. in
the DFT.45) Troullier–Martins pseudopotentials were used for
Al,46) and an ultra-soft pseudopotential was used for Li.47)

The cut-off energy of 350 eV for plane-wave basis was used
for all calculation. The energy integration over a Brillouin
zone was made with k-point grids according to the
Monkhorst–Pack sets of 6� 6� 6 k-points for the cubic
AlLi unit cell containing 16 atoms.48)

The stable atomic configurations were obtained through
relaxation according to the Hellmann–Feynman forces.
Relaxation of the internal degrees of freedom was carried
out in the case of all elastic stiffness coefficients. This
relaxation is necessary because the atomic positions are not
completely fixed by the space group symmetry. The
distortion of the crystal causes the reduction of its symmetry.
Therefore, there exist free internal parameters that must be
redetermined for any distortion of the crystal.

The stress tensor was evaluated using formalism of Nielsen
and Martin.49,50) Nielsen and Martin have derived the
reciprocal-space expression of the stress.49,50) The stress
��� is derived from the total energy Etot per a unit-cell
volume � applying the scaling r ! ðI þ d"Þr, r are the real
lattice vectors. The expression for the stress is

��� ¼
1

�

@Etot

@"��
ð2Þ

where "�� is the strain tensor. It is to be noted that the strain
tensor transforms the reciprocal lattice vectors G to ðI �
d"ÞG and detailed expressions of the total energy are can be
found in the references.42,49,50)

3. Results and Discussion

At first, the equilibrium lattice constant of AlLi was
calculated by use of a Broyden-Fletcher-Goldfarb-Shanno
(BFGS) minimization algorithm,51) and then the elastic
stiffness coefficients at the equilibrium lattice constant were
calculated. Figure 1 shows the calculated stress for the
different strain for each of the two conditions. The values of
c11, c12 and c44 were routinely obtained from the calculated
results. The calculated results including the lattice constant
with its experimental value are presented in Table 1.3) The
equilibrium lattice constant at 0K of the cubic AlLi unit cell
containing 16 atoms is a ¼ 0:6295 nm. The error of the
equilibrium lattice constant between the calculated and
experimental value is about �1:3%. The relaxation of the
internal degrees of freedom has been carried out in the results

shown in Table 1. This relaxation can induce significant
changes in the magnitudes of the elastic stiffness coefficients.
Beckstein et al. calculated the elastic stiffness coefficients of
single crystal Pt2Si and PtSi from the first principles.35) They
reported this relaxation induced increases and decreases in
the values of the elastic stiffness coefficients up to 20%.35) In
the cases of AlLi, all elastic stiffness coefficients are
unchanged within numerical uncertainties, however. To our
knowledge, there have been no experimental and theoretical
values of the elastic stiffness coefficients on single crystal
AlLi. We should therefore consider the elastic moduli such as
the bulk modulus and Young’s modulus, for the comparison
with experimental results.

From the results of the elastic stiffness, the bulk modulus
B, Young’s modulus E, shear modulus G, Poisson’s ratio �
were determined using the Voigt–Reuss–Hill averaging
scheme.36,52–54) In the Voigt average, the shear modulus in
the cubic system is given by

/

(   )

Fig. 1 The relationship between �xx and "xx ( ) and the relationship

between �yy ¼ �zz and "xx ( ) in the first condition (uniaxial strain "xx with
"yy ¼ "zz ¼ "xy ¼ "yz ¼ "zx ¼ 0) and the relationship between �xy and "xy
(+) in the second condition (pure shear strain "xy with "xx ¼ "yy ¼
"zz ¼ "yz ¼ "zx ¼ 0).

Table 1 The calculated lattice constant a and elastic stiffness coefficients,

c11, c12 and c44, of single crystal AlLi from the first principles and the

isotropic elastic constants — the bulk modulus B, shear modulus G,

Young’s modulus E and Poisson’s ratio � — of polycrystalline AlLi

calculated from the elastic stiffness coefficients with the Voigt–Reuss–Hill

averaging scheme. Available theoretical and experimental values are also

listed for the comparison.3;17Þ

This work FLAPW17Þ Experiment3Þ

a (nm) 0.6295 0.6256 0.6377

c11 (GPa) 66.9

c12 (GPa) 38.2

c44 (GPa) 51.7

B (GPa) 47.8 57.75 50.7

G (GPa) 31.0 16.6

E (GPa) 76.6 44.9

� 0.23 0.35
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GV ¼
c11 � c12 þ 3c44

5
; ð3Þ

while in the Reuss average it is given by

GR ¼
5ðc11 � c12Þc44

4c44 þ 3ðc11 � c12Þ
: ð4Þ

The bulk modulus B is the same in both the Voigt and Reuss
averages in the cubic system and it is given by

B ¼
c11 þ 2c12

3
: ð5Þ

If the Voigt and Reuss averages are applied to calculate
average isotropic elastic moduli for polycrystalline using the
elastic stiffness coefficients, they give the theoretical max-
imum (Voigt average) and minimum (Reuss average) values
of isotropic elastic moduli.36,52) Frequently, their arithmetic
average G ¼ ðGV þ GRÞ=2 is taken for an estimation of the
elastic modulus.36,52) The other two elastic constants describ-
ing an isotropic polycrystalline material, the Young modulus
E and Poisson’s ratio �, can be expressed as

E ¼
9GB

3Bþ G
� ¼

3B� 2G

2ð3Bþ GÞ
: ð6Þ

The bulk modulus B, Young’s modulus E, shear modulus
G and Poisson’s ratio � are shown in Table 1. Table 1
includes another theoretical value of the bulk modulus
calculated by the first-principles full-potential linearized
augmented-plane-wave (FLAPW) method within the local-
density approximation (LDA),17) and experimental values of
the bulk modulus, Young’s modulus, shear modulus and
Poisson’s ratio measured by the ultrasonic pulse-transmission
technique on a polycrystalline specimen at room temper-
ature.3) The bulk modulus calculated by the FLAPW method
within the LDA is lager by 13.9% than the experimental
value while our calculated bulk modulus by ab initio
pseudopotential method within the GGA is in good agree-
ment with the experimental value: the difference of the bulk
modulus between our calculated and experimental value is
about �5:7%. It is well known that the elastic moduli
calculated from the first principles within the LDA are larger
than the experimental values and the GGA calculations have
been found to improve the LDA results as shown in this work.

While the calculated bulk modulus is in good agreement
with the experimental value, the calculated shear modulus
and Young’s modulus are lager by 86.7% and 70.6% than
experimental values, respectively. The Voigt–Reuss–Hill
averaging scheme assumes that the number of grains is
sufficiently large and the orientations are randomly distribut-
ed. On the other hand, the number of grains and texture affect
any elastic moduli except bulk modulus in real polycrystal-
line materials. So some researchers has developed the
methods to calculate the contribution of the number of grains
and texture to the anisotropy of the elastic moduli of
polycrystalline materials.55–57) A lot of average isotropic
elastic moduli for isotropic polycrystalline materials have
been calculated using the Voigt–Reuss–Hill averaging
scheme from the elastic stiffness coefficients of the single
crystals that were determined not only from the first-
principles calculations but also from the experimental mesu-

ments.27,35–41,52–55,57–59) In many cases, the values of the
average isotropic elastic moduli have been in good agreement
with the values measured on polycrystalline specimens
experimentally.53–55) However, they were not always in good
agreement with the experimental values. In the case of InLi
the structure of which is NaTl structure same as AlLi, the
average elastic moduli were different from the experimental
values.3,60) Kuriyama et al. determined the elastic stiffness
coefficients of single crystal InLi by an ultrasonic pulse-
transmission technique and reported the average Young’s
modulus of polycrystalline InLi, which was calculated from
their elastic stiffness coefficients, was 38.75GPa.60) They
also measured the Young’s modulus of InLi on a polycrystal-
line specimen by the same experimental technique after a few
years.3) They reported the Young’s modulus measured on a
polycrystalline specimen was 67.8GPa, which was different
from the average Young’s modulus determined by the same
researchers by about 75%.3,60) InLi and AlLi exhibit large
elastic anisotropies as described later. Therefore, the elastic
moduli of these polycrystalline materials are sensitive to the
number of grains and/or the texture. It seems to be difficult to
compare the average elastic moduli calculated using the
Voigt–Reuss–Hill averaging scheme with the experimental
values measured on polycrystalline specimens in large
anisotropy materials such as InLi and AlLi. It is concluded
that the experimental values of the elastic stiffness coef-
ficients of single crystal AlLi, which have not been reported,
are required in order to compare the elastic constants
calculated in this work with the experimental values.

The orientation dependence of the Young’s modulus on a
single crystal can be obtained from the elastic compliance
coefficients si j. For the case of the cubic system, it can be
shown that the Young’s modulus in any given direction is
given in terms of the three independent elastic compliance
coefficients and the direction cosines of the crystallographic
direction:

1

E
¼ s11 � 2 ðs11 � s12Þ �

1

2
s44

� �
ðl21l

2
2 þ l22l

2
3 þ l21l

2
3Þ; ð7Þ

where l1, l2 and l3 are direction cosines and s11, s12 and s44 are
obtained by the relation ships c44 ¼ 1=s44, c11 � c12 ¼ ðs11 �
s12Þ�1 and c11 þ 2c12 ¼ ðs11 � 2s12Þ�1 in the cubic system.
Figure 2 shows the orientation dependence of the Young’s
modulus for single crystal AlLi. The orientation dependence
of the Young’s modulus was calculated by rotating from the
[001] to [00�11] direction around the [100] and [1�110] axes,
respectively. The value of the Young’s modulus for the h111i
direction is the highest in all direction and about three times
as large as that for the h100i direction. This means that single
crystal AlLi exhibits a large elastic anisotropy. This large
elastic anisotropy is considered to be closely related to the
interatomic bonding strength.

To illustrate the nature of the bonding it is shown that the
three-dimensional representation of the charge density dis-
tribution for AlLi in Fig. 3. This figure clearly shows an
interesting feature of pronounced Al–Al bonds connecting
the nearest-neighbor Al atoms of the Al diamond-type
sublattice just like sp3 bond in Si and GaAs. Earlier
researchers also reported the formation of this sp3-like bond
connecting the nearest-neighbor Al atoms from their band
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calculations.8,10,16) It is noted that the bond in AlLi is weaker
than that in Si and GaAs, while the bonding nature in AlLi is
similar to that in Si and GaAs. This is because that the bond
length of AlLi is shorter than those of Si and GaAs.3,16) The
sp3-like bond in AlLi consists with the elastic anisotropy of
single crystal AlLi: the direction of the nearest-neighbor Al–
Al bonds is h111i in which the value of the Young’s modulus
is the highest as shown in Fig. 2.

It is interesting to compare the elastic anisotropy of AlLi
with the sp3 bonded semiconductors such as Si and GaAs.
Table 2 shows the ratio of the Young’s modulus for the h111i
direction to that for the h100i direction, namely an elastic
anisotropy E111=E100, of Si, Ge, GaAs, InSb, AlLi and InLi.
Si, Ge, GaAs and InSb are the sp3 bonded semiconductors
with diamond or ZnS structure. On the other hands, AlLi and
InLi are semimetals with NaTl structure.3) The sp3-like bonds
are expected to form in InLi as in the case of AlLi.5,6) As can
be seen from Table 2, the elastic anisotropy E111=E100 of
AlLi and InLi is lager than those of the sp3 bonded
semiconductors with diamond or ZnS structure. In the case
of AlLi, several researchers reported that the nearest-
neighbor Al–Li bond along h111i direction is the ionically
polarized covalent bond and the Li–Li bond is nonbonding
from their band calculations.7,9) This Al–Li bond is expected
to contribute to the elastic anisotropy of AlLi in addition to
the sp3-like Al–Al bond.

4. Summary

(1) The elastic stiffness coefficients of single crystal AlLi
with cubic NaTl (B32) structure were calculated at 0K
from the first principles. The obtained elastic stiffness
coefficients, in units of GPa, were c11 ¼ 66:9, c12 ¼
38:2 and c44 ¼ 51:7.

(2) The bulk modulus B, Young’s modulus E, shear
modulus G and Poison’s ratio � were estimated for
polycrystalline AlLi using the Voigt–Reuss–Hill aver-
aging scheme from the elastic stiffness coefficients. The
calculated elastic moduli were compared with exper-
imental values measured on a polycrystalline specimen
at room temperature. While the calculated bulk mod-
ulus was in good agreement with experiment value, the
calculated shear modulus and Young’s modulus were
lager by 86.7% and 70.6% than experimental values,
respectively.

(3) The formation of the sp3-like bond connecting the
nearest-neighbor Al atoms was confirmed from the
charge density distribution as in the cases of previous
reports. The Young’s modulus for single crystal AlLi
was the highest in the h111i direction. The ratio of the
Young’s modulus for the h111i direction to that for the
h100i direction, namely the elastic anisotropy
E111=E100, was compared with those of the sp3 bonded
semiconductors such as Si and GaAs. The elastic
anisotropy E111=E100 of AlLi was lager than those of the
sp3 bonded semiconductors.
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