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The thermodynamic properties of transition metals are studied by introducing face-centered cubic (FCC) lattice model. In order to treat
actual systems as quantitatively as possible, empirical second moment approximation (SMA) potentials proposed by Rosato et al. and by Cleri et
al., which have been used widely for molecular dynamics (MD) simulations, are employed. To overcome shortcomings of lattice-gas models
such as neglecting internal entropy of the system, the potential is mapped onto FCC lattice using the renormalization technique. It is found that
the computed linear thermal expansion coefficients agree well with the results of MD simulations.
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1. Introduction

Lattice models are a simple and fast method for the study
of thermodynamic properties. One advangate is that it can
treat systems larger both in time scale and in spatial size as
compared with atomic-scale molecular dynamics (MD)
simulations so that it can treat qualitatively thermodynamic
equilibrium or diffusion phase transiton phenomena in the
solid state. Although it has been pointed out1) that thermal
lattice vibrations (anharmonicity effects) play an essential
role, its effect has not yet been properly treated in the lattice
model. Masuda-Jindo et al. studied the thermal properties of
transition metals using an analytic statistical moment
method.2) They showed that including explicitly the anhar-
monic effects of the lattice vibrations gives highly accurate
thermodynamic quantities.

To overcome the problem of neglecting the internal
entropy which originates from thermal vibrations, the
potential renormalization technique proposed by one of
us3,4) has been used. It offers an effective way to map
interatomic potentials (for example, classical MD potentials)
onto lattice models.

In previous papers,5,6) we have tried to reproduce the solid-
liquid phase transition in Si using MC simulation on the basis
of a body-centered-cubic (BCC) lattice model by renormal-
izing an empirical potential proposed by Tersoff.7) Many
improvements were found when the renormalized Tersoff
potential was used compared with using the original Tersoff
potential directly on the BCC lattice.

The technique was also applied to an FCC lattice model to
investigate the order-disorder phase transition phenomena in
Cu–Au alloys.8,9) In that study, a Finnis–Sinclair-type
potential10) by Ackland et al.11,12) and slightly refined later
by Deng et al.13) was introduced. It was shown that the
computed phase diagram agrees better with experiment when
the potential renormalization technique is applied on the FCC
lattice. We note that the present analytic scheme is a powerful
tool when we combine it with lattice Monte Carlo simu-
lations.

In the present study, the thermodynamic properties such as
the thermal expansion coefficient of transition metals and
noble metals are estimated with a FCC lattice model potential
renormalization of second moment approximation (SMA)
tight-binding (TB) potentials.14,15) Two sets of SMA param-
eters have been used; The first is proposed by Rosato et al.16)

whose cut-off radius is restricted to the first neighbors, and
the second is proposed by Cleri et al.17) whose cut-off radius
is extended to the fifth neighbors. The results are compared
with the previous-in principle exact-MD simulations16,17) and
experimental results18) when available.

2. Model

2.1 Potential function
To estimate the thermodynamic properties of FCC tran-

sition metals, we use SMA–TB potentials. The potential can
treat transition metals whose cohesive properties originate
from the large d-band density of states, and is based on a
small set of adjustable parameters and is suitable for
extension to higher-order approximation through considering
higher moments of the electron density of satates (DOS).14,15)

In the potential, the band energy can be written for an atom
i as

Ei
b ¼ �

X
j

�2 exp �2q
rij

r0

� �
� 1

� �( )1=2

; ð1Þ

where � is an effective hopping integral, ri j is the distance
between atoms i and j, and r0 is the first-neighbor distance
that gives r0 ¼ a0=

ffiffiffi
2

p
with the correct atomic volume

�0 ¼ a30=4. The parameter q describes the distance depen-
cence of the hopping integral.

To ensure stability of the system, a repulsive pairwise
interaction of Born–Mayer type is added:

Ei
r ¼

X
j

A exp �p
rij

r0
� 1

� �� �
ð2Þ

the total cohesive energy is then given by
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Ec ¼ �
X
c

ðEi
b þ Ei

rÞ: ð3Þ

The parameters A, �, p, and q are determined by fitting the
experimental values of cohesive energy, lattice parameter,
and bulk modulus.

In the present study, 7 FCC metals (Ni, Cu, Rh, Pd, Ag, Ir,
and Pt) are studied using a set of parameters proposed by
Rosato et al. (Hereafter, Rosato potential).16) In the Rosato
potential, the summation over j in eqs. (1) and (2) are
restricted to the first neighbors, which is suitable for the
potential renormalization scheme. To check the effect of the
cut-off radius of the potential parameters into the potential
renormalization scheme, another parameter set proposed by
Cleri et al. whose cut-off radius is extended to 5th neighbors
(Cleri potential)17) is also introduced for Ni and Cu.

Note that although it is known that the SMA for the d band
is well suited to transition metals only (it is harder to justify
for noble metals where the d band is full), Rosato et al.,
proposed the use of the same model for the noble metals from
an empirical point of view.

Table 1 gives the values of A, �, p, q, and a0 of Rosato
potential and Cleri potential for all the metals studied in the
present paper.

2.2 Potential renormalization
To apply Rosato potential and Cleri potential on FCC

lattice, we use the potential renormalization technique. Since
the basic ideas of the potential renormalization have been
amply shown in Refs. 3–6, 8, 9 only essential points neces-
sary for the present study are summarized.

The fundamental idea of potential renormalization is to
make a new potential function for discretized space without
changing the value of the partition function for continuous
space. Consider that N-atom system in the continuous space
with the original potential Uð~xx1; ~xx2; � � � ~xxNÞ is decomposed
into M lattice sites. The configurational term of partition
function is expressed as follows;

1

N!

Z
d~xx1

Z
d~xx2 � � �

Z
d~xxN exp �
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where, � is the volume of one lattice site, ik runs over all the
M lattice sites, and Fði1; i2; � � � iNÞ is the desired renormalized
potential which is determined by a knowledge of the original
MD potential. Here, how to use this technique in the case of
FCC metals is explained. Since four sublattices are needed
for an FCC lattice so as to exclude A–A type nearest
neighbors, one might use a ‘‘four-sublattice, four-step
renormalization’’ technique for complete study. However,
in order to reduce a large amount of the calculations, a two-
sublattice, two-step renormalization technique is used here.

Consider a case where lth atom is surrounded by n atoms
located in adjacent and different Wigner-Seitz (WS)-cells
numbered as mþ 1;mþ 2; � � � ;mþ n. Figure 1 illustrates a
two-dimensional square lattice in which the WS cell is given
by a unit square. WS cell is decomposed into two sublattices,
and we call white-colored WS cell A cell and gray-colored
WS cell B cell. In this situation, only gray-colored B cells are
neighbors of an white-colored A cell and vice versa. When
the cut-off radius of the original potential is short, one may
assume that the cut-off length of the renormalized potential to
be the same order or shorter than the lattice constant so that
one atom in the A WS cell is affected only by the ones in the
nearest neighbor B cells. (The situation is well realized in the
case of Rosato potential).

We also assume that the n coordinated atoms are
surrounded further by similar configurations. Solid lines in
Fig. 1 represent the original potential and broken lines
represent the renormalized potential which is evaluated as
follows:

In the first step of the renormalization, the trace of the lth A
cell is evaluated. In other words, the renormalized potential
function f ð~rrmþ1; ~rrmþ2; � � � ~rrmþnÞ, which is a function of the
atomic positions ~rrmþiði ¼ 1 � nÞ in the adjacent B cells, is
determined by evaluating the integral of the configurational

Table 1 Parameters of the Rosato potentialð1Þ and Cleri potentialð2Þ.

A

(eV)

�
(eV)

p q
a0

(nm)

Nið1Þ 0.1368 1.756 10.00 2.70 0.352

Cuð1Þ 0.0993 1.354 10.08 2.56 0.361

Rhð1Þ 0.0969 1.996 14.92 2.51 0.380

Pdð1Þ 0.1681 1.720 10.84 3.67 0.389

Agð1Þ 0.1232 1.281 10.12 3.37 0.409

Irð1Þ 0.144 2.499 14.53 2.90 0.384

Ptð1Þ 0.2341 2.503 10.80 3.50 0.392

Nið2Þ 0.0376 1.070 16.999 1.189 0.3523

Cuð2Þ 0.0855 1.224 10.960 2.278 0.3615

(1) parameters from Ref. 16)

(2) parameters from Ref. 17)

Rm+1

Rm+2

Rm+3

Rl

r l

Rm+4

rm+2 rm+4

rm+3

rm+1

Fig. 1 Illustration of the potential renormalization scheme. Division of the

configurational space is shown for the case of a 2-dimensional simple

square lattice. White-colored cell is A WS cell and gray-colored cell is B

WS cell. Solid lines represent the original (MD) potential and broken lines

represent the desired renormalized potential.
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exponential (Boltzmann factor) with respect to the atomic
position ~rrl inside the lth A cell, and is given as follows:

expð�� f ð~rrmþ1; ~rrmþ2; � � � ~rrmþnÞÞ

¼
1

�l

Z
d~rrl exp½��Vð~rrl; ð~rrmþ1; � � � ; ~rrmþnÞÞ�; ð5Þ

where Vð~rrl; ð~rrmþ1; � � � ; ~rrmþnÞÞ expresses the original potential,
� ¼ 1=kBT reciprocal temperature, and �l volume of lth WS
cell. Here, the left-hand side of (3) is decomposed into the
product of functions, each of which depends only on one
position, e.g. ~rrmþi, only. That is, the following parameter-
ization is introduced:

f ð~rrmþ1; ~rrmþ2; � � � ; ~rrmþnÞ
¼ f ðnÞðj~rrmþ1jÞ þ f ðnÞðj~rrmþ2jÞ þ � � � þ f ðnÞðj~rrmþnjÞ: ð6Þ

In order to reduce the large amount of calculation, further
approximation is introduced. That is, when the dependence
on the atomic position in the (mþ m0)th B cell is estimated,
other atomic positions in the (mþ m00)th B cells (m0 6¼ m00)
are fixed at the center of the cell, ~RRðmþm00Þ.

The second step of the renormalization is to evaluate the
trace of the mth B cell. From the first step, the renormalized
potential function f ðnÞð~rrmþiÞ has already been estimated. As a
result of this step, the desired renormalized potential FðnÞ for
the n coordinated configuration can be determined as follows:

exp ��nFðnÞ� �
¼

1

�m

Z
d~rrm exp ��

Xn
i¼1

f ðnÞð~rrmÞ

 !" #
; ð7Þ

where �m is the volume of the mth WS cell, and nFðnÞ in the
left-hand side is the renormalized potential for the n

coordinated configuration.
Along with the above formulation, the renormalized

Rosato and Cleri potential are evaluated. To calculate the
~rrl-integrals in (5) and (7), a WS cell is subdivided into 1,719
grid points.

3. Results and Discussion

At first, the lattice constants are estimated as a function of
temperature by minimizing the renormalized potential (on-
site free energy). As examples, Figs. 2(a) and (b) are the
results for Ni and Cu with Rosato potential, respectively.
These figures show that the lattice constant increases
monotonically with the temperature.

From the Figures, the linear thermal expansion coeffi-
cients, �, are estimated. We obtained � by averaging in the
temperature range of 0 5 T 5 1000K. We obtained � of
1:6� 10�5 and 2:2� 10�5 for Ni and Cu, respectively.
These values are in agreement with molecular dynamics
simulation results performed by Rosato et al. of 1:7� 10�5

and 2:4� 10�5 16) in the temperature range of 0:17 <
T=Tm < 0:9 with Tm is the experimental melting temper-
ature, and also mean experimental values of 1:53� 10�5 and
1:89� 10�5 18) in the same temperature regions as the present
simulations.

The lattice constant at 0K, a0, and the cohesive energy at
0K, Ec are also estimated. Again, we obtained r0 of 0.352 and
0.361 nm for Ni and Cu, and Ec of �4:44 and �3:50 eV for
Ni and Cu, respectively. These values reproduce exactly the
original potential presented in Ref. 16).

The renormalization techniques incorporates the anhar-
monic term of the original SMA potential function.

We listed the values of �, a0, and Ec for 7 FCC metals as
computed with the Rosato potential in Table 2. For compar-
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Fig. 2 Lattice constants from the potential renormalization of the Rosato

potential as a function of temperature; (a) Ni and (b) Cu.

Table 2 Thermal lattice expansion coefficient, the lattice constant at 0K, and the cohesive energy with Rosato potential.

Thermal lattice expansion coefficient,

�� 105
a0

(nm)

Ec

(eV atom�1)

Present work MD result16Þ Experimental result18Þ Present work MD result16Þ Present work MD result16Þ

Ni 1.6 1.7 1.53 0.352 0.352 �4:44 �4:44

Cu 2.2 2.4 1.89 0.361 0.361 �3:50 �3:50

Rh 0.88 0.96 0.380 0.380 �5:75 �5:75

Pd 1.8 1.35 0.389 0.389 �3:94 �3:94

Ag 2.7 2.17 0.409 0.409 �2:96 �2:96

Ir 0.73 0.77 0.384 0.384 �6:93 �6:93

Pt 1.1 0.97 0.392 0.392 �5:86 �5:86
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ison, the MD simulation results by Rosato et al. and
experimental values18) are also shown. Recall that the values,
�, obtained in the present study are very close to MD results
for Ni and Cu. That is, the difference of � between the two
methods is within 10%. For all the metals, the difference of �
between the present simulation and the experimental results
is within 30%.

Table 3 shows the values of �, a0, and Ec for Ni and Cu as
computed with the Cleri potential which extends to fifth
neighbors. The MD results17) and experimental data are also
shown.

Although � of Cu is in agreement with molecular
dynamics simulation result within 20%, that of Ni is as
twice as that of MD result. For a0 and Ec, there is a large
discrepancy between the renormalizations and MD results.
This indicates that large-ranged potentials are less suited for
the potential renormalization scheme with the currently used
approximations.

4. Summary

The thermodynamic properties of transition metals and
noble metals are studied by using a face-centered cubic
(FCC) lattice model with the renormalized Rosato potential
and renormalized Cleri potential. The lattice model well
reproduces the linear thermal expansion coefficients, �, as
compared with the results of MD simulations and experi-
ments, especially in the case of Rosato potential, whose cut-
off radius is restricted to the first neighbor distance. The
lattice constant at 0K, a0, and the cohesive energy at 0K, Ec,
are also estimated, and agree well with the corresponding
MD simulations.

Spatially more extended potentials are less suitable for
applying the present potential renormalization scheme.
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Table 3 Thermal lattice expansion coefficient, the lattice constant at 0K, and the cohesive energy with Cleri potential.

Thermal lattice expansion coefficient,

�� 105
a0

(nm)

Ec

(eV atom�1 )

Present work MD result17Þ Experimental result18Þ Present work MD result17Þ Present work MD result17Þ

Ni 3.6 1.4 1.53 0.365 0.352 �3:31 �4:44

Cu 2.4 2.1 1.89 0.368 0.362 �3:23 �3:54
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