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The structural variations with pressure in �-cristobalite, a low-density polymorph of SiO2, have been studied through first-principles
calculations using the projector-augmented-wave (PAW) method, with particular emphasis on its elastic and auxetic properties. We provide
theoretical ab initio results for the volume compressibility and a complete set of independent elastic constants of cristobalite under hydrostatic
pressures up to 10–15GPa. Our calculated structural and elastic properties under pressure are in good agreement with the experimental data. In
addition, the corresponding results of the molecular-dynamics simulations with the interatomic potential are also presented for comparison. The
dominant mechanism of compression is the reduction of the Si–O–Si angles within the �-cristobalite structure, whereas the SiO4 tetrahedron
undergoes only a slight distortion. �-Cristobalite is more compressible than other SiO2 polymorphs as shown by their volume compressibilities,
because of its characteristic framework structure similar to re-entrant honeycombs. With increasing pressure, the rotational motions of the rigid
SiO4 tetrahedra play an important role in the compressive behavior of cristobalite. The present simulations confirm that the system undergoes
transformation from auxetic to non-auxetic under hydrostatic pressure of ca. 2GPa, while retaining strong elastic anisotropy.

(Received December 21, 2004; Accepted February 17, 2005; Published June 15, 2005)

Keywords: negative Poisson’s ratio, auxetic materials, elastic constant, Birch-Murnaghan equation of state, density functional theory,

molecular dynamics

1. Introduction

Properties and behavior of silicon dioxide (SiO2) at high
pressures and/or temperatures are of great interest due to its
wide ranging implications in fundamental physics, geophy-
sics and material science. It is known that SiO2 can exist in
many different crystalline forms, such as quartz, cristobalite,
tridymite, coesite, stishovite etc. These forms (except
stishovite) are typically three-dimensional network structures
built of corner-shared SiO4 units. The phases of SiO2 serve as
model systems for studies of high-pressure structures, phase
transitions and chemical bonding.

For the last decade, low-temperature (�) phase of
cristobalite has received much attention due to its peculiar
elastic properties related to the ‘auxetic’ behavior at the
molecular level.1–4) The marked characteristic of the auxetic
materials is to exhibit a negative Poisson’s ratio, and thus
they can undergo lateral contraction under longitudinal
compression and also lateral expansion under longitudinal
tension [Fig. 1(a)]. Auxetic materials are of interest because
of the novel behavior they exhibit under deformation, and
also because such materials have possibility for improving
mechanical properties, such as enhanced shear moduli,
indentation resistance and fracture toughness.5–7)

The main objective of the present paper is to provide
results of the atomistic simulations that can be used to
evaluate quantitatively the high-pressure elasticity of cristo-
balite, and to investigate the microscopic mechanism for its
compressive behavior associated with the auxetic nature. An
understanding of the microscopic deformation process of
such crystal is essential for leading the research into the
modeling, design and development of auxetic nanomaterials.
Here we apply the first-principles calculations to compute the
structural properties and a complete set of independent elastic
constants of cristobalite, under purely hydrostatic pressure.

Also, in this work we report the calculation of the pressure
effects on elastic properties of cristobalite using equilibrium
molecular dynamics (MD) method with the nonempirical
pairwise interatomic potential by van Beest et al. (BKS).8)

The BKS model has played important role over the last
decade in numerous studies of silica and related materials.
This work intends to establish a benchmark since few works
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Fig. 1 Schematic diagram of negative Poisson’s ratio (auxetic) deforma-

tion. (a) Auxetic behavior in which an initially undeformed material

(dashed outline) undergoes longitudinal and lateral contraction (solid line)

for a compressive load applied in the longitudinal (x) direction. (b) Re-

entrant honeycomb undergoing deformation by hinging of the cell walls,

leading to negative Poisson’s ratio behavior.
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have been reported on the quantitative accuracy of this model
under pressure.

2. Computational Methods

2.1 First-principles calculations of �-cristobalite at high
pressure

We have studied the compressive behavior of �-cristoba-
lite using the Vienna Ab-initio Simulations Package
(VASP).9) The method implemented in this code involves
computation of the self-consistent total energy, Hellmann–
Feynman forces and stresses by solution of the Kohn–Sham
equations based on density functional theory (DFT); and the
subsequent relaxation of the electrons, atoms and unit cell.
Total-energy minimization calculations under the applied
pressure are performed using the projector-augmented-wave
(PAW) method10,11) within the local-density approximation
(LDA).12) For the exchange-correlation potential, the LDA
functional given by Ceperley and Alder is employed,12) and
the parameterization of Perdew and Zunger13) is used.

The simulations are started with a tetragonal primitive unit
cell of �-cristobalite, containing four SiO2 formula units, i.e.
12 atoms (space group P41212).

14) A plane-wave basis set
with a 1400 eV cutoff is adopted to expand the electronic
wave functions at the special k points generated by a 4�
4� 4Monkhorst-Pack k mesh (6 irreducible k points).15) We
have checked the sensitivity of the elastic constants of �-
cristobalite to an energy cutoff in the range 500–1400 eV, and
a high-energy cutoff of 1400 eV is chosen in this case to
obtain a satisfactory agreement with the experimental values.
Here, the tetrahedron method with Blöchl corrections16) is
applied. The ab initio calculations of �-cristobalite are
carried out by gradually increasing the pressure in 0.5–
1.0GPa increments for pressures up to 15GPa. Forces on
atoms and internal stress tensor are calculated, and atoms and
cell parameters are allowed to relax using a conjugate
gradient technique until their residual forces have converged
to less than 0.1 eV/nm.

The crystal structure of �-cristobalite is tetragonal, i.e.,
with two unit vectors of the same length (a ¼ b), and thus its
symmetry implies that there are six independent elastic
constants for the phase. In order to calculate a complete set of
independent elastic constants, affine strains are imposed on
the unit cell in different directions, each corresponding to a
certain elastic constant. However, it is known that the
relaxation effects can be important for some materials, in
particular, for auxetic crystals with internal degrees of
freedom. Thus, the atomic coordinates are allowed to relax
for each modification of the cell, leading to the general
decrease of energy, and also the force on each atom is relaxed
to less than 0.005–0.01 eV/nm.

2.2 Molecular dynamics simulations of �-cristobalite
using an interatomic potential

Equilibrium molecular dynamics (MD) simulations of �-
cristobalite have been performed starting from the �-phase at
zero stress to the high-pressure phase continuously. We
employ the effective pairwise interatomic potential proposed
by van Beest et al. (BKS)8) in the calculations reported here.
It was derived from the cluster calculations of potential-

energy surfaces using the ab initiomethod for achieving high
accuracy and transferability. The force-field parameters used
in this work are given in Ref. 8). The Nosé–Hoover17,18) and
the Parrinello–Rahman19) isothermal-isobaric thermostat is
applied to realize the structures of the reference states at
300K under nonzero external stress. In constructing the
initial configurations of �-cristobalite, atoms are placed on
experimentally determined positions.14) The periodic simu-
lation box for cristobalite is chosen to contain 48
(¼ 4� 4� 3) unit cells, so that the number of atoms in all
MD calculations is 576, i.e. 192 silicon and 384 oxygen
atoms. The hydrostatic pressure of the system is continuously
raised up to the desired value (P ¼ 0, 5 and 10GPa) at a rate
of 0.25GPa/ps, after which the system is equilibrated over
80 ps. The integration time step in all MD simulations in 2 fs.

The adiabatic elastic constants at various pressures are
calculated within the constant-volume and constant-energy
ensemble, using the fluctuation formula for the internal stress
tensor.20) The elastic constants under conditions of nonzero
stress at a finite temperature are expressed by

V0h
�1
0i ph

�1
0 jqh

�1
0krh

�1
0lsCpqrs

¼ �
4

kBT
�ðMijMklÞ þ 2NkBT G�1

li G�1
jk þ G�1

ki G
�1
jl

� �

þ
X
b>a

f ðrabÞsabisabjsabksabl

* +
av

; ð1Þ

where M ¼ �ðV=2Þh�1Ph0�1, P denotes the internal stress
tensor and V the volume containing the N particles, sabi is a
scaled coordinate related to the real coordinate by
xabi ¼ hijsabj, h0 is the value of the matrix for the case of
zero stress, and h is its value when the system is under the
prescribed stress. The values of h0 and h to be used in eq. (1)
are obtained by carrying out appropriate NTP runs. T

represents the temperature, kB the Boltzmann constant, G
the metric tensor G ¼ h0h, and f ¼ r�2ðu00 � r�1u0Þ where
the pair potential is denoted by uðrÞ. The fluctuation of a
product of A and B is defined by �ðABÞ ¼ hABiav �
hAiavhBiav where the bracket represents the ensemble-
average value. In order to check the validity of statistical
sampling, the averages are separately taken every 80 ps
during a 2.24-ns run for each pressure.

3. Results and Discussion

3.1 Structural variations with pressure
The lattice parameters of �-cristobalite at ambient pressure

were evaluated using the DFT calculations and MD simu-
lations with the BKS potential. The obtained values are a0 ¼
0:4928 (0.49570) nm, c0 ¼ 0:6835 (0.68903) nm, V0 ¼
0:1660 (0.16931) nm3 for the DFT calculations, and a0 ¼
0:4930 [0.49709] nm, c0 ¼ 0:6625 [0.69278] nm, V0 ¼
0:1610 [0.17118] nm3 for the BKS potential. Here, the
numbers in round and square brackets are the experimental
values14) at 10 and 293K, respectively. For both the methods,
the calculated theoretical values are found to be slightly small
(within 1–5%) but fairly close to those obtained from the
neutron diffraction data.14)

With increasing pressure from 0 to 15GPa, the unit-cell
parameters decrease continuously with pressure and the
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system successively undergoes compressive deformation.
Also, the tetragonal phase of cristobalite survives compres-
sion up to the applied pressure of 15GPa, under the present
symmetry conditions. Thus, the slightly distorted monoclinic
cristobalite II structure as reported in Ref. 21) at P ¼ ca.
1.5GPa is not considered in our simulations.

To obtain information about the organization of neighbor-
ing atoms from the DFT results, the radial distribution
functions for O–O and Si–O distances in cristobalite are
calculated at various pressures, as presented in Fig. 2.
Besides, the bond angle distribution functions for the O–
Si–O and Si–O–Si angles are shown in Fig. 3. In Fig. 2 and
Fig. 3, we confirm that the first-nearest Si–O and O–O
distances, and the O–Si–O angles remain essentially un-
changed up to the applied pressure of 10GPa, and the rigid
SiO4 tetrahedral units in �-cristobalite structure are main-
tained during the compression. The only significant effect is
in the Si–O–Si angle, which decreases from 143� at ambient
pressure to 125� at 10GPa, whereas the SiO4 tetrahedra
become slightly distorted (Fig. 3). In Fig. 2(a), the O–O
distances beyond the nearest neighbors become much shorter

as the pressure increases, and we observe that the phase of �-
cristobalite continuously evolves into the compressive phase
up to 10GPa, as shown in Fig. 4. Despite the large stiffness
of tetrahedral units, the flexible framework structures readily
undergo volumetric deformation through cooperative SiO4

rotations, due to the weak interactions between SiO4

tetrahedra. Structural studies at the lower pressures of
�1:5GPa1,22) suggest that the pliant nature of the framework
structure gives rise to the large compressibility and negative
Poisson’s ratio. In the present simulations, it is confirmed that
the similar atomic-level compression mechanisms can be
observed under hydrostatic pressures up to 10GPa, within the
�-cristobalite structure.

From the ab initio total-energy minimization calculations
and the MD simulations with the BKS potential, the
theoretical pressure-volume data were fit to the third-order
Birch-Murnaghan equation of state (EOS) respectively, in the
following form:
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where K0 and K 0
0 denote the zero pressure bulk modulus and

its pressure derivative, respectively, and x ¼ V0=V , where V0

is the ambient unit cell volume. The fit yields
K0 ¼ 8:9ð3ÞGPa with K 0

0 ¼ 10:5ð5Þ for the DFT calculations,
and K0 ¼ 18:5ð0Þ with K 0

0 ¼ 9:4ð0Þ for the BKS potential,
respectively.

Figure 5 shows the volume compressibility curve obtained
in the analysis, along with the x-ray diffraction data from
Ref. 22) (solid triangle). In Fig. 5, the experimental data for
cristobalite II21) are also plotted as a guide (solid diamond). It
is noteworthy that our theoretical data obtained from the DFT
calculations are in good agreement with the experimental
data, and also in accordance with the EOS for hydrostatic
pressure. Here, the volume-compressibility data for the BKS
potential are found to be overestimated from the experiment
in the entire pressure range, and the system resists compres-
sion under pressure compared with the DFT system. Also,
Fig. 5 indicates that �-cristobalite is more compressible than
other SiO2 polymorphs, such as �-quartz [K0 ¼ 38:7, K 0
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Fig. 2 Radial distribution functions for (a) O–O and (b) Si–O distances of �-cristobalite, from 0 to 10GPa.
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4:9 in Ref. 23)], coesite [K0 ¼ 96, K 0
0 ¼ 8:4 in Ref. 24)], and

stishovite [K0 ¼ 313, K 0
0 ¼ 2:8 in Ref. 25)]. It is considered

that this high compressibility of cristobalite is due to its
auxetic nature at ambient pressure, and the cooperative
motions of corner-linked SiO4 tetrahedra play important role
in the compressive behavior under hydrostatic pressure.

3.2 Pressure dependence of the elastic constants and
Poisson’s ratio

The adiabatic elastic stiffness constants (Cij) of cristobalite
were evaluated under pressures of 0–10GPa using the DFT
calculations and MD simulations with the BKS potential,
respectively. The obtained Cij values for the two methods are
given in Table 1. We have included the experimental values1)

for comparison, as well as the results of previous MD
calculations3,27) using the interatomic potential proposed by
Tsuneyuki et al.26) (TTAM).

At ambient pressure, our calculated values are in good
agreement with the experimental data, both for the DFT
calculations and for the BKS potential. In particular for the
DFT calculations, the shear components C44 and C66 are
within 2–3% off the experimental values, while the bulk
components C11 and C33 are off the experimental ones by
around 9 and 16%, respectively. The deviation for two of
Cij’s, C12 and C13, is rather high, around 40%. However, this
high deviation can be understood from the fact that the two
elastic constants have a low magnitude compared with the
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Fig. 5 Evolution with pressure of the unit-cell volume of �-cristobalite.

The open circles and squares represent data from the DFT calculations and

the MD calculations, respectively. The best fit Birch-Murnaghan equation

of state [K0 ¼ 8:9ð3ÞGPa, K 0
0 ¼ 10:5ð5Þ for the DFT calculations, and

K0 ¼ 18:5ð0ÞGPa, K 0
0 ¼ 9:4ð0Þ for the BKS potential] is represented as

the solid curve. For comparison, the pressure-volume curves for quartz,

coesite, and stishovite are shown as dashed lines. The x-ray diffraction

data (solid symbols) are from Refs. 21, 22).

Table 1 Calculated values for elastic constants, Cij (in GPa), of �-cristobalite together with experimental values.

P ¼ 0

(GPa)

P ¼ 2

(GPa)

P ¼ 5

(GPa)

P ¼ 10

(GPa)

Expt.a DFT BKS TTAMb DFT DFT BKS DFT BKS

C11 59.4 54.6 64.5 48.1 63.4 106.2 94.6 103.8 144.1

C33 42.4 36.4 37.9 35.3 57.2 63.2 97.5 86.0 136.7

C44 67.2 68.6 69.5 57.8 71.2 72.6 82.9 79.4 97.3

C66 25.7 25.0 27.6 19.8 25.4 23.2 26.6 18.8 27.2

C12 3.8 5.2 6.5 5.6 16.2 22.0 17.8 40.6 43.5

C13 �4:4 �7:4 �0:7 �4:2 4.6 24.0 27.9 40.8 72.0

aReference 1).
bInteratomic potential by Tsuneyuki et al.26Þ [data from Ref. 3)].
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Fig. 4 Unit cells of �-cristobalite at (a) 0GPa and (b) 10GPa. The oxygen and silicon atoms are represented by the gray and black spheres,

respectively.
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other ones.
With increasing pressure up to 10GPa, every component

of the elastic constants except C66 tends to increase, while
C66 is almost constant in this pressure range, for both the
calculations. The Cij values for the BKS potential, especially
C11, C33, and C13, are much larger than those obtained from
the DFT calculations. This indicates that the model system of
�-cristobalite interacting via the BKS potential is stiffer, and
resists volumetric deformation under hydrostatic pressure.
This corresponds to the results concerning the pressure-
volume curves, as seen in Fig. 5. Through comparison with
the DFT calculations, it is suggested that the compressive
behavior and the high-pressure elasticity of �-cristobalite are
not well described by the BKS model, whereas its force-field
parameters are reasonably successful in describing the
structural and elastic properties at ambient pressure.

The bulk modulus (K) and shear modulus (G) for an
isotropic aggregate of cristobalite were evaluated from the
Cij’s by means of the Voigt-Reuss-Hill average. Table 2
shows K, G, and the Poisson’s ratios (�) of the single-phased
aggregate of cristobalite at various pressures for the DFT
calculations and the BKS potential, respectively. Here, �
values are derived by using the following formula for an
isotropic solid:

� ¼
3K � 2G

2ð3K þ GÞ
: ð3Þ

The sign of a Poisson’s ratio is determined by the relationship
between K and G, as seen in eq. (3).

For the DFT calculations, the bulk modulus of �-
cristobalite increases dramatically with hydrostatic pressure,
whereas the shear modulus does not change and exhibits an
almost constant value in the entire pressure range of 0–
10GPa. As a result, a negative value of the isotropic
Poisson’s ratio is observed only in the pressure region
between ca. 0–2GPa, and thus the system undergoes trans-
formation from auxetic phase to non-auxetic phase at around
2GPa, without the significant symmetry breaking during the
compression. For the BKS potential, the bulk modulus
exhibits a much larger value than those obtained from the
DFT calculations, and the shear modulus increases gradually
with pressure at 0–10GPa. However, the similar pressure
dependence and the change in the sign of a Poisson’s ratio is
also observed. In the lower pressure range of 0–2GPa, �-
cristobalite is susceptible to volumetric deformation, but is
resistant to shear deformation against the stress, and thus a
uniaxial compression leads to the volume contraction without
change in shape. This fact coincides with the high compres-

sibility of �-cristobalite in the pressure range of 0–2GPa (in
Fig. 5), and the considerable increase of bulk modulus with
pressure above ca. 2GPa.

3.3 Anisotropy of Poisson’s ratio
The directional property of a Poisson’s ratio is investigated

by the quotient of lateral to longitudinal strain, for all
possible orientations of the coordinate system relative to the
crystallographic axes. For a loading along the xi direction, the
Poisson’s ratio �i j of a material is given by

�i j ¼ �
Sji

Sii
ði; j ¼ 1; 2; 3Þ; ð4Þ

where xj is a transverse direction under consideration, and Sij
stands for the elastic compliance constants, the inverse of Cij

matrix. The variations in the �12, �23, and �31 values for the �-
cristobalite at various pressures are shown in Fig. 6.

In �-cristobalite at 0GPa, the Poisson’s ratio exhibits a
marked anisotropy. Over all crystallographic directions its
magnitude ranges from þ0:07 to �0:59. However, its
average exhibits a negative value (Table 2). The negative
maximum value of �23 ¼ �0:59 is obtained by rotating Sij
through approximately 42� from the b axis about the a axis.
In �-cristobalite, this is the principal direction which shows a
negative value of the Poisson’s ratio. This negative value
results from the typical framework structure of �-cristobalite
which consists of uniform sixfold rings (Fig. 4). These rings
have an inverted characteristic similar to re-entrant honey-
combs, the typical model which induces a negative Poisson’s
ratio,28–30) as shown in Fig. 1(b). At 10GPa, the magnitude of
the Poisson’s ratio ranges from þ0:48 to �0:22, and the
rotation of Sij about the a axis produces a maximum �23 ¼
�0:22 at 44� from the b axis, while the isotropic value of the
Poisson’s ratio exhibits a positive value (Table 2). With
increasing pressure, the range of a Poisson’s ratio shifts
gradually to a positive region, as seen in Fig. 6. However, its
magnitude ranges from a negative to a positive values, and
the structure retains high elastic anisotropy.

4. Conclusions

In conclusion, we have investigated the structural varia-
tions with pressure and the high-pressure elasticity of �-
cristobalite, using both the ab initio DFT calculations with
the PAW method and the MD simulations based on the BKS
pairwise potential. Our DFT and MD approaches permit a
description of the changes with pressure in the volume
compressibility and the elastic properties of cristobalite, the

Table 2 Isotropic bulk modulus (K in GPa), shear modulus (G in GPa), and Poisson’s ratio (�) of �-cristobalite.

P ¼ 0

(GPa)

P ¼ 2

(GPa)

P ¼ 5

(GPa)

P ¼ 10

(GPa)

Expt.a DFT BKS TTAMb DFT DFT BKS DFT BKS

K 16.37 13.4 18.8 13.6 25.9 45.0 48.1 59.6 88.6

G 39.05 38.0 39.4 32.1 39.4 42.3 47.4 40.2 52.3

� �0:163 �0:23 �0:12 �0:16 0.00 0.14 0.13 0.22 0.25

aReference 1).
bInteratomic potential by Tsuneyuki et al.26Þ [data from Ref. 27)].
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typical model of auxetic crystals. However, the BKS model is
not so successful in describing the compressive behavior and
the high-pressure elasticity of cristobalite, compared with the
DFT calculations. We have applied the elastic constants
derived from our calculations to study the isotropic average
and directional dependence of Poisson’s ratios in the crystal.
It is predicted that cristobalite exhibits a negative Poisson’s
ratio only in the pressure range of ca. �2GPa, while the
Poisson’s ratio shows a strong anisotropic behavior up to
10GPa. We present that the compressive behavior in the
cristobalite structure is dominated by the cooperative
rotations of corner-linked SiO4 tetrahedra at molecular level.
To this end, our simulations give satisfactory results and
enables us to analyze the anomalous behavior of the elastic
properties in this system, while the effect of the internal
degrees of freedom within the system is taken into account
under hydrostatic pressure.
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Fig. 6 Variation in Poisson’s ratios of �-cristobalite for a uniaxial loading as the crystals are rotated about the a axis from the b axis.

(a) 0GPa, (b) 2GPa, (c) 5GPa, (d) 10GPa.
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