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Glass Transition within Cluster Variation and Path Probability Methods
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Thermodynamic framework of Crystal-Glass transition is described within the Cluster Variation Method (CVM). Free energy is calculated
as a function of order parameter at various temperatures and 7, diagram is obtained. It is demonstrated that the glass transition temperature can
be interpreted as the spinodal ordering temperature in the order-disorder transition. The advantage of the present description is that the kinetic
behavior can be investigated within the same framework by employing Path Probability Method (PPM). Therefore, the combination of the CVM
and PPM provides a unique theoretical tool to study Crystal-Glass transition in a consistent manner covering thermodynamics and kinetics.
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1. Introduction

Bulk Metallic Glasses (BMG) have been attracting broad
attentions for their superior mechanical, magnetic and
corrosion properties. The bulk of the investigation, however,
has been directed towards the development and applications
of new BMG’s, and the understanding of fundamental
properties of BMG is still far from satisfactory. In particular,
the studies of thermodynamic stability and its structure
correlation leave numerous subjects un-clarified. Since
unique properties of BMG are exclusively owing to Crys-
tal-Glass (CG) transition, fundamental studies of BMG and
CQG transitions are inseparable. Recalling that CG transition is
not a fully equilibrium transition, a successful theory of CG
transition should be capable of covering both thermodynam-
ics and kinetics aspects in a consistent manner.

Cluster Variation Method (CVM)" has been recognized as
one of the most reliable theoretical tools to investigate order-
disorder transition. Path Probability Method® which is the
natural extension of the CVM to time domain clarifies
various temporal behavior in the atomistic level. Then, the
combination of the CVM and PPM is best suited to
investigate the order-disorder transition from non-equilibri-
um to equilibrium states. The limitation of the conventional
CVM, however, is the fact that only uniform deformation of
the system is allowed and no local displacement can be
introduced. On the other hand, recent development of
Continuous  Displacement Cluster Variation Method
(CDCVM)*® lifts such a limitation and opens up a
possibility of investigating a topologically disordered struc-
ture in addition to substitutionaly disordered phase. The
investigation of thermodynamic stability of the BMG which
forms non-Bravais lattice is, therefore, a potential candidate
for the application of CDCVM.

Yet the thermodynamic framework of CG transition has
not been described within the conventional CVM, and it is
deemed indispensable to examine the capability of describing
the essential thermodynamic feature of CG transition prior to
the application of the CDCVM. Motivated by the excellent
article of Okamoto et al.,” the main objectives of the present
study is to describe the thermodynamic frameworks of CG
transition based on CVM and to clarify kinetic aspects by
Path Probability Method (PPM). Thereby, a unified inter-

pretation of CG transition covering both thermodynamics and
kinetics is attempted. The organization of the present work is
as follows. In the next section, essential aspects of CVM and
PPM are summarized. In the third section, independent
configurational variables are introduced to correlate order-
disorder transition with CG transition. Main results are
presented in the last section and discussion follows.

2. Cluster Variation Method and Path Probability
Method

CVM was devised by Kikuchi originally as a statistical
mechanics methods to study interacting particles. It was van
Baal'”? who first applied the CVM to the calculation of a
phase diagram. Then, Kikuchi and de Fontaine'"'> demon-
strated that the Cu—Au type phase diagram was reproduced
much more accurately as compared with the one'® obtained
based on the traditional Bragg-Williams (BW) approxima-
tion."” The advantage of the CVM over the BW approx-
imation is addressed not only in terms of the topology of the
resultant phase boundaries but also the accuracy of the order
of transition. In fact, BW approximation fails to reproduce
the first-order nature of the L1-disorder transition at 1:1
stoichiometirc composition, while the CVM yields the
correct order of the transition.

The advantage of the CVM is the fact that CVM is able to
incorporate wide range of atomic correlations which play a
significant role especially at the phase transition. The range
of the correlation is characterized by the largest cluster
involved in the entropy formula which is termed basic cluster
and specifies the level of the approximation. For the Bragg-
Williams approximation, a lattice point is the basic cluster
and it is often called point approximation in the CVM
hierarchy.

Within the tetrahedron approximation,'® for instance, the
largest cluster is the nearest neighbor tetrahedron cluster and
the entropy for a fcc disorderd phase is written as
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where kg is the Boltzmann constant, N is the number of
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lattice point, and x;,y;; and w;jy are cluster probabilities of
finding an atomic arrangement specified by subscript(s) on a
lattice point, pair and tetrahedron clusters. This is the most
often employed approximation in the CVM and even first-
principles calculations by combining with electronic struc-
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imation. For an ordered phase, one needs to distinguish
sublattices and the exponents of the entropy formula are
modified depending upon the phase of interest. For the L1
ordered phase which is the main concern of the present study,
the entropy formula is given as

ture calculations can be performed'¢~'® within this approx-
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where the superscripts « and g specify the sublattices. It is noted that the disordered phase is a limiting case where the
distinction of the sublattices in an ordered phase vanishes. This can be easily seen that the sum of the exponents in eq. (2) is
identical to the one for each cluster probability in eq. (1). In the following discussions, we focus only on L1 ordered phase.

In order to describe the free energy, a nearest neighbor pair interaction model is applied for the internal energy E which is
given by

Silo = kg - In 2

E“°= ‘N- Ze,, G5+ 4 + 30 3)

where ¢;; is the atomic pair interaction energy between species i and j and the coefficient of the cluster probability describes the
degeneracy of each pair in the L1y ordered phase. It is noted that the range of atomic correlation generally exceeds the one for
atomic interaction, hence the largest cluster in the internal energy term should be included in the basic cluster in the entropy
formula. This criterion is certainly satisfied in the present study, i.e. y;; € w;ju.

By combining eqgs. (2) and (3), the free energies of an L1, ordered phase is obtained as
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The equilibrium state is determined by minimizing the free energy with respect to the cluster probabilities,
aF10
o0 ©
where ¢ represents a cluster probability and the subscripts and superscripts denote the atomic configuration and the sublattices,

respectively.

Path Probability Method (PPM) was devised as the natural extension of the CVM to time domain by Kikuchi. The time
evolution of each cluster probability is described by the path variable which constitutes Path Probability Function, P, which is
a counter part of the free energy of the CVM and is given as a product of the following three terms,
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where 6 is the spin flipping probability per unit time that
corresponds to the diffusivity of an alloy system, and AE is
the change of the internal energy during Ar given by

where "’ is the degeneracy factor of each pair which is
equivalent to the coefficient of pair probability in eq. (3). X; ;,
Yijio and Wijkmnop are path variables for point, pair and
1 tetrahedron clusters, which describe the time transition of the

E= > “N- Zwy‘g Z ejj - {yz?/jﬁ(t + A —y}; ’(H} (9)  species on the sublattices specified in the sub- and super-
v Lj scripts, respectively. These are the key variables correspond-
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ing to cluster probabilities of the CVM.

It may be easier to grasp the physical meaning of a path
variable by exemplifying a simple point cluster. The first
subscript i in X}'; indicates the configuration on a point cluster
at time 7, while the second subscript j indicates the one at
time t 4 At, and the cluster probability x{ at time ¢ can be
written as,

x{() = X7, (¢, t + A + X7, (1, + Ab). (10)

Note that 1 and i(—l) in the subscript indicate A and B
atoms, respectively, throughout this study. Likewise, the
cluster probability x{ at time 7 + At can be written as

X+ A = XY (Lt + AD+ X2 (Lt + AD. (1)

It is noticed that these are generalized geometrical conditions
in the time-space which will be introduced soon. One can
easily extend the relationships to the time evolution of the
pair configuration as follows,

Vi = Y0+ A + Yi/fj](hf—i- Ar)
+ Y17 1+ A (12
and
VG + A = Y1 Gt AD YT (1 + A 0

+ Y0

i1,11(”t+ At)

Py in eq. (6) describes the non-correlated spin flipping
events over an entire lattice point and P, in eq. (7) suggests
the probability of gaining the thermal activation energy AE
by a system interacting with a heat reservoir. The character-
istic feature of the PPM is written in the third term, P3, which
is quite similar to the entropy term of the CVM given in
eq. (2). In fact, P3 describes the microscopic freedom of
atomic transition paths, which is the extension of the
configurational freedom in the lattice written in the entropy
term. Such a parallel formalism with the CVM is the natural
consequence of the PPM devised as the extension of the
CVM to the time domain.

The key criterion claimed in the PPM is that the most
probable transition path is determined so that the PPF is
maximized with respect to the path variables,

oP B 14
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S kL)
where P is the PPF given by
P=P -P,-P; s)

mloo )y o . o
and Ej"py” indicates a path variable describing the

transition from {ij ...} to {kl...} during the infinitesimal time
step At. This condition is the counterpart of the minimization
condition of the free energy of the CVM given in eq. (5).
Two points should be addressed. One is that, unlike other
kinetic theories, PPM does not explicitly deal with the free
energy or its derivative. This is a unique feature of the PPM
and ensures the applicability of the PPM even for a far-from-
equilibrium transition.’>?® The second point is that the
present formulae given by eqs. (6)—(8) are applicable only
to a spin kinetics.*” Although more appropriate for an alloy
system are the exchange kinetics®® or vacancy mediated
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kinetics, those kinetics demand formidably many microscop-
ic paths and the formulation as well as numerical calculation
become intractable. A critical deficiency of the spin kinetics
when dealing with an alloy originates from the fact that the
species is not conserved with time. However, at 1:1 stoichio-
metric composition, it can be shown that the conservation of
the spin species is observed without any additional con-
straints. Hence, the present calculation confined to 1:1 stoi-
chiometric composition simulates an alloy system.

3. Correlation Functions and Constrained Minimiza-
tion

As was seen in the previous section, the cluster proba-
bilities are the key quantities in both equilibrium and kinetics
analysis. However, cluster probabilities are related through

ngfzzy?:zwfﬁfﬁz ...... =1 (16
i i,j

ij.k,l

and

X =202 = D vl a7
v okl

which are known as normalization condition and geometrical
conditions, respectively. Therefore, cluster probabilities in
the free energy in eq. (4) are not mutually independent, and
in terms of mathematical transparency, it is more convenient
to work with independent variables. Hence, the correlation
functions®”-?®) are introduced in the following way.

The correlation function &, for a J-point cluster is defined
as the ensemble average of a product of spin variables
(01-02-+-0p,---0y), where o, is the spin variable which
takes either +1 or —1 depending upon A or B atom located at
the lattice point p. It has been shown that a cluster probability
X{s;()) of which configuration is specified by / can be given by
a liner transformation of a set of correlation functions,

1
X)) = 7 {1 + Z Vi, 1) - 51/} (18)
l/

where V is called V-matrix?>"?® and involves the sum of
products of i, j, k . . ., and I suggests a sub-cluster contained in
the cluster /. Since mathematical details have been amply
demonstrated,”’*® we simply reproduce the specific exam-
ples for a point, pair and tetrahedron clusters as follows,

1
xi=§(1 +i-&) (19)

1
yij=?{1+(i+j)'§|+i-j-§2} (20)

and

1
Wi = 2 {1+ Gkt D61 ik il 4+ KD

&+ (k4 - 4 jKI) - & 4 ikl - &4). 21)

It is noticed that the above discussions and formulae given
in eqgs. (18)—(21) are limited to a disordered phase. For an
ordered phase, one needs to distinguish sub-lattices. The
extension is quite straightforward and eqs. (19) and (20), for
instance, can be rewritten as,
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1
X=_(+i-&)

> (22)

and

1 : . .
W= Ui g+ 8+i-j- &) @
Then, the free energy of an L1, ordered phase given in
eq. (4) is rewritten as
FHo = (T, {0 il vl wigh)

= FUN(T ()i = 6 85, 657 6 6570 577, 600,
(24)

Since the atomic interaction energies {e;;} are kept to be
constant, they are omitted from the free energy in the
following descriptions. Temperature 7 in the present study is
normalized with respect to effective pair interaction energy
defined as,

vy = (ean +esp) AR (25)
2
and is given by
kg -T
T" = . (26)
v

Then, the free energy of an L1 ordered phase is symbolically
expressed as

FHo = F(T*, 81,8 85, 657 &P 650 6577 6P,

where F'o is replaced by F“! for the sake of convenience.
When our discussion is confined to a fixed 1:1 stoichiometry,
which was required by PPM calculations for a spin kinetics,
the number of independent correlation functions are reduced
due to the symmetry of the L1, ordered phase which claims
Ef = —§}, 8 = Eg’g and ’g‘gﬂﬁ = —S‘;a’g. Hence, the final form
of the free energy is given as

FUo = F(T, &%, 85, &P &5 £5°FF),

Note that the superscript * is omitted from the temperature to
avoid unnecessary confusion. Among these five correlation
functions, &7 serves as a Long Range Order parameter (LRO),
since it is readily shown from eq. (22) that

5 = — .

while the rest of the correlation functions are Short Range
Order parameters (SRO).

When the free energy is minimized with respect to all the
correlation functions at a given temperature 7',

dF-1o

e
one obtains the equilibrium state. In the present study,
however, we performed a constrained minimization in which
only SRO’s participate in minimization under a specified
LRO at each temperature

aFLlo

&)}

27

(28)

(29)

=0, (30)
T

=0. (€20
T8
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Then, one obtains the Free energy F*'0 as a function of T
and &. The subscript * implies that the original free energy is
subject to the constrained minimization. For the latter
purpose, we replace LRO & by 7, and the resultant function
is written as

Fl = £(T, ). (32)

4. Crystal-Glass transition

A common approach to the crystal-glass (CG) transition
within phenomenological studies is to describe the free
energy in a power series expansion of an order parameter up
to the six-th order. This assures the first-order character of the
crystal-liquid transition. Mathematically, the present formal-
ism of the free energy given in eq. (32) is not so trivial to
ensure the first-order character of the transition. However,
previous calculations of the Llj-disorder phase dia-
grams>>?829) guaranteed the first-order character in eq. (32)
in many other ways, including the existence of the two phase
region, the discontinuity of the order parameter at the
transition temperature, and the separation of the transition
temperature and the spinodal ordering temperature. We
reconfirmed this by representing the free energy as a function
of the order parameter n at various temperatures as shown in
Fig. 1.39

The horizontal axis is the order parameter 7, which
represents a liquid phase at unity (n = 1) and a perfect crystal
at null (n =0). It is noted that unity (null) is generally
assigned to a perfect ordered phase (a completely random
phase) in the study of order-disorder transition. Hence, we
convert 1 in eq. (32) from & in eq. (29) through n =
1.0 — &}. We interpret the finite value of the order parameter
n as the amount of generalized defects including impurities,
dislocations, and lattice vibrations that induce breaking of the
crystal symmetry and lead to the liquid transition. The
specification of a particular kind of defect is not essential in
the present study.

One notices the characteristic free energy curve in which

0.1 0.845
0.861
0.05
B o0
P 01 02 0 - : : ; : - 0972
o 1
8 -0.05
= 1.025
0l 1.07
0.15
113
-0.2
n
Fig. 1 Free energy f(n, T) as a function of the order parameter 1 at various

temperatures indicated on the right hand of the figure. n =0 and 1
correspond to a perfect crystal and a liquid phase, respectively. A global
minimum appears at n = 0.031, 0.036 and 0.109 at T = 0.845, 0.861 and
0.972, respectively. At T =0.972, a local maximum is found at n =
0.613. Two global minima coexist at n = 0.153 and 1.00 at 7 = 1.00. At
T = 1.025, a local minimum and maximum merge around n = 0.254 and
no local extrema appear above this temperature.”
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two free energy minima have the same value and a common
tangent line has a null slope. The curve is indicated by 1 on
the right hand side of the figure. This is the free energy curve,
f(T;,7n), at the melting point or equilibrium crystal-liquid
transition temperature, 7;. The free energy barrier between
the two minima suggests the first-order character of the
liquid—crystal transition. The number on the right hand side
of the figure is the normalized temperature. Note that the
temperature 7 throughout this section is normalized with
respect to 7;, and the normalized temperatures of the
corresponding free-energy curves are described on the right
hand side of Fig. 1.

At temperatures less than 7' = 1, the free energy minimum
appears at n closed to null, indicating that the most stable
state is a crystal. The deviation of the minima from the null is
due to the entropy effect, suggesting that some defects are
unavoidable in the crystal at a finite temperature. At the high
temperatures greater than 7 = 1, the minima are shifted to
n = 1. There are two characteristic temperatures 7, = 0.861
and Ty = 1.025 at which the inflection points defined by the
following equations appear/disappear in the free energy
curve.

Ffn, 1) #f(n.Tw)
m>  amr

Hence, for the temperature 7 satisfying Tp <7 < 1
(1 < T < Ty), liquid (crystal) is in a metastable state at a
local minimum, while below T (above Ty) liquid (crystal) is
unstable. We call these characteristic instability temperatures
“spinodal ordering®”/disordering® temperatures” in the
case of order-disorder transition.

By following the work of Okamoto,” we plot the free
energy of F''o = f(T,n) as the function of T for various
values of 7, expressed as g,(T) = f(T,n) for the sake of
convenience. The results are shown in Fig. 2. g,—1(T) =
f(T,n = 1) expresses the temperature dependency of a liquid
free energy. The intersection of g,(T) with g,—(T) defines
the Ty temperature which is regarded as the melting temper-
ature of a defective crystal characterized by the order
parameter 7. An interesting feature in Fig. 2 is that g,(T)
merges to g,=1(T) at a critical temperature without an
intersection. This implies that the entropy of the defective
crystal, given as the slope of g,(T) curve, becomes identical
to that of the liquid.

0. (33)
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-0.15 1
B

0.8 0.85 0.9 0.95 1 1.05 1.
T

1.15

Fig. 2 Free energy curve, g,(T) = f(n, T). The intersection of g,(T") with
gy=1(T) (liquid phase) provides T, temperature.
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Fig. 3 T, diagram indicating a tricritical point which is the glass-transition
temperature. The vertical axis corresponds to a normalized temperature.”)

T, temperature is plotted as the function of 1 in Fig. 3.3

This is a type of phase diagram but it is more appropriate to
call it a Ty diagram because the equality of the free energy
expressed in the diagram does not necessarily guarantee the
transition at the equilibrium state. One sees that the melting
point deceases with the amount of defects (7). Also,
important is the fact that the 7y curve terminates at a certain
critical point T, = 0.861 and 5. = 0.976, forming a tri-
critical point. This is exactly the temperature at which the
entropy of the defective crystal becomes identical to that of
the liquid, and this is identified as the ideal glass transition
temperature. When the defect is further introduced into the
crystal at a tri-critical state, the defective crystal transforms
into an ideal glass, but upon raising the temperature above T,
the ideal glass becomes a super cooled liquid. One realizes
that 7, is nothing but 71, which was discussed earlier and is
characterized as the temperature at which spontaneous loss of
the stability begins.

The critical distinction of the physical significance of
T.(Tp), however, should be made between an order—disorder
transition and a CG transition. For the latter, kinetics plays a
crucial role, and the enhanced viscosity virtually blocks the
transition to the equilibrium state. The discussions have so far
centered around thermodynamic aspects. For the theoretical
treatment to be consistent, it is deemed necessary that the
kinetics aspects can be described within the same theoretical
framework. As mentioned above, the Path Probability
Method is the extension of the CVM to the time domain
and the CVM inherits advantages in the PPM. We attempted
to calculate the time evolution of the order parameters at an
aging period following the quenching operation from the
liquid state at 7 = 1.09.

Shown in Fig. 4(a)*” is the aging curve of  at T = 0.845
which is below T1. One sees that the value of 1 decreases
with time, finally followed by the transition to crystal. The
steady state value of 1 in the long time limit is confirmed to
be the equilibrium 7 which is independently calculated by the
CVM. While for an aging temperature at 7 = 0.90, above Tt,
as shown in Fig. 4(b),>” one of two different aging behaviors
occur, depending upon the initial deviation of n from the
equilibrium value at 7 = 1.09. Imposing an additional
chemical potential at the initial time induces such a deviation.
With a sufficiently large fluctuation (deviation) tramsition
takes place, while for a small deviation, the super-cooled
liquid returns to the metastable liquid state. The difference
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Fig. 4 Time evolution of order parameter n at (a) 7 = 0.845 below T3, and (b) 0.90 above Ti,. The pre-quenching temperature is 7 = 1.09.

The horizontal time axis is normalized with respect to spin flipping probability.
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Fig. 5 Temperature dependence of the relaxation time at each aging
temperature. The slowing-down takes place near Ty = 1.025.

between these two modes of transition at 7 = 0.845 and 0.90
originated from the absence (0.845) or presence (0.90) of the
free energy barrier, which is similar to the difference between
spinodal ordering and nucleation-growth ordering for the
order-disorder transition. In both modes, what is to be
emphasized for CG transition is that the time of transition is
formidably long on the ordinary lab scale.
Finally, we calculate the relaxation time t by fitting the
aging curve into the following equation,
t
n() = Neq — (neq — 7o) - exp<_ ;) (34)
Shown in Fig. 5 is the temperature dependence of the
relaxation time when the system is up-quenched to each
temperature. One sees that the relaxation time increases with
temperature despite the thermal activation event is to be
enhanced. This has nothing to do with any atomistic
mechanism, but is a natural consequence of the flattening
of the free energy surface that leads to a loss of the
thermodynamic driving force in the transition. In an order-
disorder transition, this is known as a slowing-down
phenomenon, and it occurs near the spinodal disordering
temperature (transition temperature) for the first order
(second order) transitions. In fact, the slowing-down in
Fig. 5 occurs near Ty = 1.025. To the best of author’s
knowledge, slowing-down behavior has not been reported in
connection with BMG. Examination of the present theoret-
ical result will require further study. In particular, the
theoretical investigation of relaxation mechanisms associated

30)

with the CG transition is at the core of future study.

The present study demonstrates that a conventional CVM
clearly describes the thermodynamic framework of the CG
transition. This is quite encouraging to employ the Contin-
uous Displacement Cluster Variation Method (CDCVM) in
future studies of atomistic displacement and its correlation
with structural and thermal stabilities. Although the applica-
tion of CDCVM to a realistic alloy system is still at a
primitive stage, it is a potential theoretical tool in considering
the structural features of BMG, and it may takes us one step
further towards analysis of the structural CG transition. The
key ability of CDCVM, however, depends on the extent to
which we can incorporate topological randomness. This
depends crucially on the development of both a sufficient
numerical scheme and a powerful computational tool. We
emphasize that the advantage of the CVM-based study is that
we can investigate the Kkinetic aspects within the same
framework, and thereby perform a consistent study associ-
ated with CG transition from thermodynamics to kinetics.

Acknowledgements

The author is grateful to Professor Emeritus T. Takahashi
of Hokkaido University for his stimulating discussion and to
Mr. Y. Kobayashi for his assistance of preparing the
manuscript. The present work is supported by Grant-in-Aid
for Scientific Research on Priority Areas, “Materials Science
of Bulk Metallic Glasses” from Ministry of Education,
Culture, Sports, Science and Technology.

REFERENCES
1) R. Kikuchi: Phys. Rev. 81 (1951) 998.
2) R. Kikuchi: Prog. Theor. Phys. Suppl. 35 (1966) 1.
3) R. Kikuchi and A. Beldjenna: Physica A 182 (1992) 617.
4) R. Kikuchi: J. Phase. Equilibria 19 (1998) 412-421.
5) R. Kikuchi and K. Masuda-Jindo: Comp. Mater. Sci. 14 (1999) 295.
6) H. Uzawa and T. Mohri: Mater. Trans. 42 (2001) 422.
7) H. Uzawa and T. Mohri: Mater. Trans. 42 (2001) 1866.
8) H. Uzawa and T. Mohri: Mater. Trans. 43 (2002) 2185.
9) P.R. Okamoto, N. Q. Lam and L. E. Rehn: Solid State Physics, vol. 52.

ed. by H. Ehrenreich (Elsevier Academic Press, San Diego, 1999).
10) C. M. van Baal: Physica, Utrecht 64 (1973) 571.
11) R. Kikuchi and D. de Fontaine: (NBS Publication SP-496 1978) 967.
12) D. de Foantine and R. Kikuchi: (NBS Publication SP-496 1978) 999.



1186

13)
14)
15)
16)
17)
18)
19)
20)

21)
22)

23)

T. Mohri
W. Schekley: J. Chem. Phys. 6 (1938) 130. 24)
W. L. Bragg and E. J. Williams: Proc. R. Soc. A 145 (1934) 69. 25)
R. Kikuchi, J. Chem. Phys. 60 (1974) 1071. 26)
T. Mohri and Y. Chen: Mater. Trans. 43 (2002) 2104.
Y. Chen, S. Iwata and T. Mohri: Calphad 26 (2002) 583. 27)
T. Mohri and Y. Chen: Mater. Trans. 45 (2004) 1478. 28)

T. Mohri and Y. Chen: J. Alloys Comp. 383 (2004) 23.

T. Mohri, Y. Ichikawa, T. Nakahara and T. Suzuki: Theory and
Applications of the Cluster Variation and Path Probability Methods,
ed. J. L. Moran-Lopez, (Plenum Press, New York, 1996) 37.

T. Mohri, Y. Ichikawa and T. Suzuki: J. Alloys Compd. 247 (1997) 98.
T. Mobhri: Properties of Complex Inorganic Solids, ed. A. Gonis,
(Plenum Press, New York, 1997) 83.

T. Mohri and S. Miyagishima: Mater. Trans., JIM 39 (1998) 154.

29)
30)
31)

32)
33)

T. Mohri: Z. Metallkunde 90 (1999) 71.

T. Mohri: Modelling Simul. Mater. Sci. Eng. 8 (2000) 239.

T. Mohri: Properties of Complex Inorganic Solid 2, ed. A. Meike,
(Kluwer Academic/Plenum Publishers, 2000) 123.

J. M. Sanchez and D. de Fontaine: Phys. Rev. B 17 (1978) 2926.

T. Mohri, J. M. Sanchez and D. de Fontaine: Acta Metall. 33 (1985)
1463.

T. Mohri, J. M. Sanchez and D. de Fontaine: Acta Metall. 33 (1985)
1711.

T. Mohri: submitted to The Science of Complex Alloy Phases,
Proceeding of TMS 2005 meeting.

D. de Fontaine: Acta Metall. 23 (1975) 553.

R. J. Glauber: J. Math. Phys. 4 (1953) 294.

K. Kawasaki: Phys. Rev. 145 (1966) 224.



