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Effect of anisotropy in grain boundary energy on kinetics of grain growth and topological properties of grain structure in two dimensions
was simulated by the phase field model. Misorientation distribution in a system with anisotropic grain boundary energy is found to be time-
dependent. Fraction of low angle grains boundaries increases with time and high angle grains disappear fast. The average area is found to be
proportional to time in both isotropic and anisotropic cases. The anisotropy in grain boundary energy delays the growth rate. The scaled grain
size and the edge number distributions become time-independent in both isotropic and anisotropic cases. Anisotropy in grain boundary energy
broadens the scaled grain size and the edge number distributions. The characteristics of the size distribution can be represented by the variation
in a parameter, called microstructural entropy. The nearest neighbor face correlations obtained by the simulated grain structures with isotropic
and anisotropic grain boundary energies are quite similar to the Aboav–Weaire relation.
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1. Introduction

Modeling of kinetics of grain growth is essentially
important for materials design of structural materials. Due
to the difficulty of incorporating topological features into
analytical theories of grain growth directly1–5) there has been
increasing interest in the use of computer simulations to study
behavior of grain growth. A variety of models have been
proposed during the past two decades.6–14) Among these
models, the Monte Carlo and the phase field models11–14) are
the most robust and versatile and certainly the most highly
developed and widely applied. The feature of the Monte
Carlo model is that grain boundaries are described as sharp
interfaces with zero thickness. This makes modeling of grain
growth simpler, however it has a disadvantage in predicting
microstructural evolutions in practical materials.

The phase field model has been successfully applied to
simulation of temporal and spatial evolution of micro-
structure. This model represents temporal evolutions in the
chemical composition, crystallographic, and structural fields.
In the phase field model phase boundaries are assumed to be
diffused with finite thickness. The free energy density
functional is defined to have continuous local order param-
eters. Temporal evolution of the whole microstructure is
calculated by the temporal and spatial changes of local order
parameters. The polycrystalline microstructure is described
by a set of orientation field variables; �1ðrÞ; �2ðrÞ; . . . ; �pðrÞ.
The interfacial energy of a material is related to parameters in
fundamental equations of the phase field models, i.e. the
gradient energy coefficient, �, and a parameter in a local free
energy function, a3.

When the motion of grain boundary is driven by its
curvature, it is known that the migration speed of a small
segment of the boundary, v, can be written as:

v ¼ L�ð�1 þ �2Þ; ð1Þ

where L is the Onsager’s phenomenological coefficient, �1 þ
�2 is the local mean curvature and � is the grain boundary
energy density. Although grain growth has been analyzed

mostly in the isotropic limit, where both L and � are taken to
be constant, it is well known that both the energy and
mobility of grain boundaries are strongly anisotropic.

In this paper, the effect of anisotropy in the grain boundary
energy on growth kinetics and topological properties of grain
structure has been investigated. The effect of anisotropy in
grain boundary energy on grain growth has been investigated
by the Monte Carlo method. It is known that anisotropy in
grain boundary energy broaden the grain size and face
number distributions. We will investigate kinetics of grain
growth in two dimensional lattice with anisotropic grain
boundary energy by the phase field model.

2. Simulation Model

In the phase field model for grain growth of polycrystalline
materials, microstructure of polycrystalline materials is
described by set of orientation field variables, �1ðrÞ;
�2ðrÞ; . . . ; �pðrÞ, where �iðrÞ (i ¼ 1; 2; . . . ; p) are called
orientation field variables that distinguish different orienta-
tions of grains and p is the integer number of possible
orientations. Within the grain labeled by �1, the absolute
value for �1 is 1 while all other �i for i 6¼ 1 is zero. Across the
grain boundaries between the grain �1, and its neighbor
grains, the absolute value of �1 changes continuously from 1
to 0. According to Cahn and Hilliard,15) the total free energy
functional of an inhomogeneous system is given by

F ¼
Z

f0ð�1ðrÞ; �2ðrÞ; . . . ; �pðrÞÞ þ
Xp

i¼1

�

2
ðr�iðrÞÞ2

" #
d3r;

ð2Þ

where f0 is the local free energy density which is a function
of orientation field variables, �iðrÞ, and � is the gradient
energy coefficient. The spatial and temporal evolutions of
orientation field variables are described by the time-depend-
ent Ginzburg–Landau equations for nonconserved order
parameter:16)
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where Li are the Onsager’s phenomenological coefficients.
We used the Ginzburg–Landau type free energy density
functional for the present simulation,

f0ð�1ðrÞ; �2ðrÞ; . . . ; �pðrÞÞ ¼
Xp

i¼1

�
a1

2
�2i þ

a2

4
�4i

� �

þ a3
Xp

i¼1

Xp

j 6¼i

�2i �
2
j ;

ð4Þ

where a1, a2 and a3 are phenomenological parameters. The
only requirement for f0 is that it has 2p minima with equal
well depth at ð�1; �2; . . . ; �pÞ ¼ ð1; 0; . . . ; 0Þ; ð0; 1; . . . ; 0Þ; . . . ;
ð0; 0; . . . ; 1Þ; ð�1; 0; . . . ; 0Þ; ð0;�1; . . . ; 0Þ; . . . ; ð0; 0; . . . ;�1Þ.
Therefore, a3 has to be greater than a2=2 when we assume
a1 ¼ 1, a2 ¼ 1. In order to simulate the ideal case of uniform
mobilities and energies, we set each order parameter equal to
its absolute value, effectively restricting the available order
parameter space to that containing only the p degenerate
minima of f0.

13)

When L, � and a3 are assumed to be constant, the above
equations describe isotropic grain growth. Anisotropy is
incorporated by making L, � and a3 misorientation under
constraint of constant grain boundary width17) as follows:
According to the analysis of Cahn and Hilliard,15) there exists
a simple relation between the gradient energy coefficient �
and the grain boundary energy Egb as � / E2

gb. So simply
taking � / E2

gb will alter the grain boundary thickness and,
may affect the simulation results. It is well known that the
thickness of grain boundary l in the phase field approach is18)

l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð� f Þmax

p
ð5Þ

where ð� f Þmax is the maximum height of the barrier in the
free energy density between two minima and grain boundary
energy is given by18)

Egb �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� � ð� f Þmax

p
ð6Þ

In the simulations by changing both � and ð� f Þmax and
simultaneously and keeping the ratio �=ð� f Þmax constant,
one can simulate boundaries of the same thickness but
different energies. The relative height of the barrier height
corresponding to the energy Egb is given by:17)

ð� f Þmax ¼
Egb

Eð0Þ
gb

ð� f Þð0Þmax ð7Þ

where ð� f Þð0Þmax is a certain choice of value for barrier heights
that gives desired boundary thickness lð0Þ and Eð0Þ

gb is a
correspond value for the grain boundary energy. In this case
gradient coefficient is chosen to be a value �ð0Þ. Changes in
the height of the barrier can be accompanied by varying the
coefficient a3.

According to Ma et al.,19) we characterize the misorieta-
tion field corresponding to an arbitrary distribution for grain
boundaries in system

�ð~rrÞ ¼
�

p
i; j6¼i�

2
i �

2
j�i j

�
p
i; j 6¼i�

2
i �

2
j

ð8Þ

where �i j is the misorientation angle between grain i and
grain j with orientations �i and � j eq. (8) assign a constant
misorientation angle within the grain boundary region
between grain i and grain j with value of the angle �i j, given
by a predetermined look-up table, and yield a weighed-mean
misorientation at junction. To determine the detailed form of
L and �, it is necessary to know dependences of grain
boundary energy and mobility on misorientatation.

In a simple dislocation model the energy of a low angle tilt
boundary between two cubic crystals has been obtained as a
function of misorientation and inclination.20)

�ð�Þ ¼ �0
�

�m
1� ln

�

�m

� �� �
ð9Þ

where �m is the maximum angle at which Read-Shockley
formula holds and �0 is constant. The value of �m is assumed
to be 18� in the simulation.

In this simulation the mobility anisotropy is not taken into
consideration,

L ¼ L0 ð10Þ

It is reported that the mobility anisotropy does not signifi-
cantly change grain growth kinetics and topological proper-
ties of simulated grain structure.17)

For the purpose of simulating the grain growth kinetics, the
set of kinetic eq. (3) have to be solved numerically by
discretizing them in space and time. In order to minimize the
lattice anisotropy, the Laplacian is discretized by the
following equation,

r2�i ¼
1

ð�xÞ2
1

2

X
j

ð� j � �iÞ þ
1

4

X
k

ð�k � �iÞ

" #
; ð11Þ

where �x is the discretizing grid size, j represents the first
nearest neighbors of site i and k represents the second nearest
neighbors of site i. For discretization with respect to time, we
used the simple explicit Euler equation,

�iðt þ�tÞ ¼ �iðtÞ þ
d�i

dt
��t; ð12Þ

where �t is the time step for integration.

3. Result and Discussion

3.1 Microstrucural evolution and kinetics of grain
growth

Simulation were performed on 2-dimensional lattice with
size of N ¼ 21002 and the number of orientations of p ¼ 72.
The lattice step size�xwas set to be 1.0 and a time step�t of
0.05 was employed. All simulations were performed on the
lattice systems with periodic boundary condition. In order to
prevent large discontinuous change in grain size by coarsen-
ing of grains having the same orientation, the nucleation sites
were situated so that grains with same orientation are located
at distance of a pre-set minimum distance in each phase field.
To visualize the microstructure evolution using the orienta-
tion field variables, the following function was defined:

’ðrÞ ¼
Xp

i¼1

�2i ðrÞ; ð13Þ
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which takes on a value of unity within individual grains and
smaller values in the core regeions of the boundaries.13,14) If
we map the value of ’ to a specturm of graylevels, then we
obtain images like that of Fig. 1, in which the grain
boundaries appears as dark regions separating individual
grains. The topological properties such as number of side,
cross-sectional length, or area can be evaluated directly by
choosing a threshold value in ’ to establish the boundary
positions. In this manner, it is possible to quantify the
evolution of local and averaged topological grain properties
during coarsening.

Figure 1 shows temporal evolution of microstructure
obtained from simulation for isotropic grain boundary.
Typical microstructure during grain growth in systems with
anisotropic grain boundary energy is shown in Fig. 2. There
is an increase in number of grain boundaries which is
considered to have low grain boundary energy. It is clear that
in the anisotropic case grain shape anisotropy develops.
Misorientation distribution in systems with isotropic grain
boundary and anisotropic grain boundary is shown in Fig. 3.
Simulations were started with a uniform misorientation
distribution, which provide an equal probability to find grain
boundaries of any misorientation. The distribution in the
isotropic case is time-independent because all boundary
properties are not time-dependent. When grain boundary
energy is anisotropic, fraction of low angle (low energy
boundary) boundaries increases significantly during grain
growth. This suggests that high angle (high energy) bounda-
ries disappear at a faster rate.

The average grain area versus time for isotropic and

anisotropic cases is shown in Fig. 4. in both cases, the
average area is found to be proportional to time. Growth rate
for anisotropic case is slower than that in isotropic case. This
is considered to be due to the fact that a number of lower
energy boundaries in anisotropic case increases with time.
The migration speed of a small segment of the boundary is
known to be proportional to grain boundary energy.1)

3.2 Grain size and edge number distributions
In order to get the grain size and edge number distributions

3 runs of simulation were performed. After a short transient
time, the grain size distribution becomes time-independent.
The scaled grain size distribution for isotropic and aniso-
tropic cases is shown in Fig. 5. The distribution for
anisotropic case is slightly broader than that for isotropic
case, i.e. when grain boundary is anisotropic, fractions of
small and large grains become larger.

To evaluate profile of the grain size distribution, a
parameter S is defined as

S ¼
�igi lnðgiÞ

�igi
; ð14Þ

where gi is the value of normalized grain size defined by
gi ¼ Ri=Rav, in the i-th size group of Ri=Rav. From the
analogy to the entropy of ideal mixing, S is called micro-
structural entropy.21) When the size distribution has a narrow
peak, the value of S is expected to be small. When the
distribution becomes flat or widely scattered, S pass through
an extreme. As shown in Fig. 6, the value of S for anisotropic
case is larger. The characteristics of size distribution profile

Fig. 1 Simulated microstructural evolution in 2100� 2100 cells in isotropic case.
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may be represented by the value S efficiently.
The distribtuions of the edge number Ne, for individual

grains of the simulated microstructures is calculated. The
distribution becomes time-invariant at the longer time. The
frequency increase rapidly for a small number of edges and
peaks at a vlaue of 5 or 6 and decays quickly. Figure 7 shows
comparison of the edge number distribution for the system
with anisotropic grain boundary energy with that for the
isotropic system. As shown in Fig. 7 the edge number
distribution for grain structure with anisotropic grain boun-
dary is slightly broader than that for the isotropic case.

3.3 Nearest neighbor edges correlation
The relationship between the average number edges of

grain adjacent to an N-edged grain, mðNeÞ, and the edge
number of grains, Ne, is shown in Fig. 8. The linear relation
equation known as the Aboav–Weaire relations22,23) is
obtained between mðNeÞ and Ne.

mðNeÞ ¼ 5:038þ
8:427

Ne
isotropic case

¼ 5:023þ
8:223

Ne

anisotropic case ð15Þ

Empirical equation given by Aboav22) is

Fig. 2 Simulated microstructural evolution in 2100� 2100 cells in anisotropic case.
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mðNeÞ ¼ 5þ
8

Ne
ð16Þ

This can be generalized to a relation24)

mðNeÞ ¼ 5þ
6þ �

Ne

; ð17Þ

where � is the second moment of the side of grains.
Differences between the parameters in the Aboav–Weaire

type empirical equation in the isotropic case and those in the
anisotropic case are not significant. As is pointed out by
Holm et al.25) lattice anisotropy affects the second moment �.
In this simulation the lattice anisotropy is so small that our
empirical equation is quite similar to Aboav’s relation.

3.4 Comparison of various simulation results
The Monte Carlo simulation results in two dimensions26)

indicate that the grain size and grain edge distributions
become broad in systems with anisotropic grain boundary
energy. In these model the broadening of the distributions is
attributed to disappearance of high energy grains by grain
boundary wetting. Similar result is obtained by a 3-demen-
sional Monte Carlo simulation.27) This result is in good
agreement with present simulation results.

Kazaryan et al.17) investigated effect of anisotropy and
mobility on grain growth. Their result indicates that grain
boundary energy anisotropy significantly delays grain growth
and broadens edge number distribution. They also showed
that distribution of misorientation in anisotropic case is time-
dependent. The above results are in good agreement with
those obtained by this simulation. However, they indicate
that anisotropy in grain boundary energy does not affect the
grain size distribution, which does not coincide with the
present simulation. Further investigation is necessary.

4. Summary

Effect of anisotropy in grain boundary energy on temporal
evolution and morphology of grain structure in two dimen-
sions was simulated by the phase field model.

The following results are obtained.
(1) Misorientation distribution in a system with anisotropic

grain boundary energy is found to be time-dependent.
Fraction of low angle grains boundaries increases with
time and high angle grains disappear fast. The average
area is found to be proportional to time in isotropic and
anisotropic cases. The anisotropy in grain boundary
energy delays growth rate. The scaled grain size and the
edge number distributions become time-independent in
both isotropic and anisotropic cases.

(2) Anisotropy in grain boundary energy broadens the
scaled grain size and the edge number distributions. The
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characteristics of the size distribution can be repre-
sented by the variation in a parameter, called micro-
structural entropy.

(3) The nearest neighbor face correlations obtained by the
simulated grain structures with isotropic and aniso-
tropic grain boundary energies are quite similar to the
Aboav–Weaire relation.
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