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Temporal evolution and morphology of grain structure in three dimensions were simulated by the phase field and the Monte Carlo
simulations. In order to prevent impingement of grain of like orientation, a new algorithmwas adopted for both simulations. Excluding the initial
stage, the average area is found to be proportional to time in the phase field and the Monte Carlo simulations. The scaled grain size and the face
number distributions become time-independent in both simulations. The scaled grain size and the face number distributions obtained by the
phase field simulation are in good agreement with those by the Monte Carlo method. The nearest neighbor face correlation similar to the Aboav–
Weaire relation is observed in simulated grain structures by both methods. The nearest neighbor face correlation for the phase field model is
quite similar to that for the Monte Carlo method. The Allen–Cahn type equation for the phase field simulation can be derived from the master
equation of the Monte Carlo Model.

(Received December 21, 2004; Accepted February 24, 2005; Published June 15, 2005)

Keywords: grain growth, phase field method, Monte Carlo method, three dimension, grain size distribution, face number distribution

1. Introduction

Control of microstructure of a polycrystalline material is
one of most important factors that determines properties of
the materials such as strength, toughness, electrical con-
ductivity and magnetic susceptibility. Computer simulation
models based classical thermodynamics and phase trans-
formation theory have been successfully applied to prediction
of microstructural evolutions in materials. However, inho-
mogeneity in microstructure in materials affects mechanical
properties such as impact and corrosive properties. The
incorporation of factors which characterize spatial and
temporal distributions of microstructure is essentially im-
portant.

Understanding of kinetics of grain growth is essentially of
fundamental importance, not only for its intrinsic interest, but
also for its technological significance.1,2) Due to the difficulty
of incorporating topological features into analytical theories
of grain growth directly3–5) there has been increasing interest
in the use of computer simulations to study grain growth. A
variety of models have been proposed during the past
decades.6–14) Among these models, the Potts and phase
field11–14) are the arguably the most robust and versatile and
certainly the most highly developed and widely applied.

The Potts model was first proposed by Potts as a general-
ization of the Ising model for simulating the critical
transitions in magnetic materials with more than two
degenerate states.6–12) The Potts model treats the evolution
of a nonequilibrium, discrete ensemble which populates a
regular lattice. The ensemble can represent the compotition
and structure of materials. In the early 1980s, when
computational facilities became sufficiently inexpensive to
make it readily accessible, the Potts model was applied to
coarsening phenomena, namely grain growth11,12) and soap
froth coarsening.15) Since then, it has been modified to study
many microstructural evolution problems including nor-
mal16) and abnormal grain growth,17) recrystallization,18)

coarsening in two phase system, Ostwald ripening,19) and

microstructural evolution in thermal gradient.20)

Phase field model is based on the Onsager’s linear
irreversible thermodynamics.21) It has been extensively
applied to simulation of temporal and spatial evolution of
microstructure. This model represents temporal evolutions in
the chemical, crystallographic and structural fields. In this
model phase boundaries are assumed to be diffuse with finite
thickness. The free energy density functional is defined to
have continuous local order parameters. Time history of the
whole microstructure is calculated by the temporal evolu-
tions of local order parameters. In this paper, we will deal
with single-phase polycrystalline materials. The polycrystal-
line microstructure is described by a set of orientation field
variables; �1ðrÞ; �2ðrÞ; . . . ; �QðrÞ. The interfacial energy of a
material is related to parameters in fundamental equations of
the phase field models, i.e. the gradient energy coefficient, �,
and a parameter in a local free energy function, �.

One of the serious problem in grain growth simulation is
that large discontinuous changes in the area of individual
grain can occur when one grain meets and coalesces with
another grain having the same orientation. In order to prevent
the impingement of grain of like orientation too frequently,
the large number of Q, the total number of grain orientations,
is chosen. The growth rate is inversely proportional to Q. To
overcome the above problems, we proposed new algorithm22)

in which the grain number is allotted to each lattice point in
the Monte Carlo simulation. In the phase field simulation
initial structure is prepared in the way that grains have the
same orientation are situated at a certain distance.

Kinetics, grain size and edge distribution results obtained
by the phase field model are reported to be in good agreement
with those by the Monte Carlo method.19) Krill and Chen
compared kinetics and topological results in grain growth in
3-dimension given by the phase field simulations with results
by various simulations.23) However comparison of the phase
field and the Monte Carlo results for similar condition is left
unfinished problem.

In this paper, we execute simulation of grain growth in 3-
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dimensions by the phase field model and the Monte Carlo
method with new algorithms in order to prevent large
discontinuous changes in grain sizes. The phase field
simulation results are compared with those by the Monte
Carlo model. Kinetics of normal grain growth and topolog-
ical results of grain structures such grain size distributions,
grain face distributions simulated by both models under
similar conditions are compared. With these results, we will
discuss the interrelations of the master equation of the Monte
Carlo simulation and continuum thermodynamic equations of
interface motion.

2. Model Description

2.1 Phase field model
In the phase field model for the grain growth of

polycrystalline materials, microstructure of polycrystalline
materials is described by set of orientation field variables,
�1ðrÞ; �2ðrÞ; . . . ; �QðrÞ, where �iðrÞ (i ¼ 1; 2; . . . ;Q) are called
orientation field variables that distinguish different orienta-
tions of grains andQ is the number of possible orientations. A
schematic microstructure represented by orientation fields in
2-D is shown in Fig. 1. Within the grain labeled by �1, the
absolute value for �1 is 1 while all other �i for i 6¼ 1 is zero.
Across the grain boundaries between the grain �1, and its
neighbor grains, the absolute value of �1 changes continu-
ously from 1 to 0. The schematic profiles of �1 and �2 across
the grain boundary between the grain �1 and �2 are shown in
Fig. 2. All other field variables this grain boundary having
zero values. According to Cahn’s and Hilliard’s treatment,24)

the total free energy functional of an inhomogeneous system
is given by

F ¼
Z

f0ð�1ðrÞ; �2ðrÞ; . . . ; �QðrÞÞ þ
XQ
i¼1

�i

2
ðr�iðrÞÞ2

" #
d3r;

ð1Þ

where f0 is the local free energy density which is a function
of orientation field variables, �iðrÞ, and �i is the gradient
energy coefficient. The spatial and temporal evolutions of
orientation field variables are described by the time-depend-
ent Ginzburg–Landau equations for nonconserved order
parameter.25)

@�iðr; tÞ
@t

¼ �Li
�F

��iðr; tÞ
; ði ¼ 1; 2; . . . ;QÞ ð2Þ

where Li are the Onsager’s phenomenological coefficients.
We used the Ginzburg–Landau type free energy density
functional for the present simulation

f0ð�1ðrÞ; �2ðrÞ; . . . ; �QðrÞÞ ¼
XQ
i¼1

�
�

2
�2i þ

�

4
�4i

� �

þ �
XQ
i¼1

XQ
j 6¼i

�2i �
2
j ;

ð3Þ

where �, � and � are phenomenological parameters. The
only requirement for f0 is that it has 2Q minima with equal
well depth at ð�1; �2; . . . ; �QÞ ¼ ð1; 0; . . . ; 0Þ; ð0; 1; . . . ; 0Þ; . . . ;
ð0; 0; . . . ; 1Þ; ð�1; 0; . . . ; 0Þ; ð0;�1; . . . ; 0Þ; . . . ; ð0; 0; . . . ;�1Þ.
Therefore, � has to be greater than �=2 when we assume
� ¼ 1, � ¼ 1. In order to simulate the ideal case of uniform
mobility and energy, we set each order parameter equal to its
absolute value, effectively restricting the available order
parameter space to that containing only the Q degenerate
minima of f0.

13)

For the purpose of simulating the grain growth kinetics, the
set of kinetic eq. (2) have to be solved numerically by
discretizing them in space and time. In this paper, the
Laplacian is discretized by the following equation,

r2�i ¼
1

ð�xÞ2
X
j

ð� j � �iÞ; ð4Þ

where �x is the discretizing grid size, j represents the first
nearest neighbors of site i. For discretization with respect to
time, we used the simple explicit Euler equation,

�iðt þ�tÞ ¼ �iðtÞ þ
d�i

dt
��t; ð5Þ

where �t is the time step for integration.
Fig. 1 Schematic illustration of microstructure described using orientation

variables.

Fig. 2 Schematic illustration of microstructure described using orientation

variables.
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2.2 Monte Carlo simulation algorithm
In the Monte Carlo computer simulation model proposed

by Exxon group,11,12) the microstructure is mapped onto
discrete lattice. To each lattice is assigned a number that
corresponds to an orientation of the grain. The kinetics of
grain boundary motion can be studied by counting the
number of change of the orientation assigned to each lattice
(reorientation trial).

In order to prevent the impingement of grain of like
orientation too frequently, we proposed a new algorithm22) in
which the grain number is allotted to each lattice point. The
procedure of the simulation is as follows:

. A grain number from 1 to the system size, N, is assigned
to each lattice point sequentially.

. A number corresponds to an orientation of a grain is
randomly assigned to each grain.

. The evolution of microstructure is tracked by the
change of orientation on each lattice.
– One lattice site is selected at random
– If the lattice site belongs to grain boundary, then a

new orientation is generated.
– If one of the nearest neighbor lattices has the same

orientation as the newly selected grain orientation, a
re-orientation trial is attempted.

– The change in energy, �E, associated with the change
of grain orientation is calculated.

– The re-orientation trial is accepted if �E is less than or
equal to zero. If the value �E is greater than zero, the
re-orientation is accepted with probability, W ¼
expð��E=kBTÞ.

If the system is N, N re-orientation attempts are referred to 1
Monte Carlo step (MCS).

The change of interfacial energy accompanying re-ori-
entation is a driving force of interface migration. The
interfacial energy is related to the interaction energy between
nearest neighbor sites. The interfacial energy is a function of
the grain misorientation:

E0 ¼ �
X
hi ji

Msis j ; ð6Þ

where si is a grain orientation which takes a value from 1 to
Q. The sum is taken over nearest neighbor sites. The matrix
Mij is given by

Mij ¼ Jð1� �i jÞ; ð7Þ

where J is a positive constant which sets the scale of grain
boundary and �i j is the Kronecker’s delta.

3. Numerical Simulation Result and Discussion

3.1 Phase field simulation
Simulation were performed on 3-dimentional lattice with

size of N ¼ 1803 and the number of orientations of Q ¼ 60.
The lattice step size�xwas set to be 2.0 and a time step�t of
0.05 was employed. All simulations were performed on the
lattice systems with periodic boundary condition. In order to
prevent large discontinuous change in grain size by coarsen-
ing of grains having the same orientation, the nucleation sites
were situated so that grains with same orientation are located
at distance of a pre-set minimum distance in each phase field.

To visualize the microstructure evolution using the orienta-
tion field variables, the following function was defined:

’ð~rrÞ ¼
Xp

i¼1

�2i ðrÞ; ð8Þ

which takes on a value of unity within individual grains and
smaller values in the core regeions of the boundaries.13,14) If
we map the value of ’ to a specturm of graylevels, then we
obtain images like that of Fig. 3, in which the grain
boundaries appears as dark regions separating individual
grains. The topological properties of the latter —such as
number of side, cross-sectional area, or volume— can
evaluated directly by choosing a threshold value in ’ to
establish the boundary positions. In this manner, it is possible
to quantify the evolution of local and averaged topological
grain properties during coarsening.

The average grain area versus time steps for the 1803

system is shown in Fig. 4. Excluding the early stage, the
average area is found to be proportional to time. In order to
get the grain size and grain face distributions 6 runs of
simulation were performed. The scaled grain size distribution
is shown in Fig. 5. After a short transient time, the grain size
distribution becomes time-independent. The distribtuions of
the number of face, Nf , for individual grains of the simulated
microstructures is shown in Fig. 6. The distribution becomes
time-invariant at the longer time. The frequency increase

Fig. 3 Microstructural evolution in 180� 180� 180 cells simulated by

the phase field model.
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Fig. 4 Average area versus time simulated by the phase field model.
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rapidly for a small number of faces and peaks at a vlaue of 12
to 14 and decays quickly. Figure 7 shows variation in the
average face number with time. The initial value of 15.0
decreases with time and approaches to a constant value of
about 13.7.

The relationship between the average number of faces of
grain adjacent to an N-faced grain, mðNf Þ, and the face
number in grains, Nf , is shown in Fig. 8. The linear relation
equal similar to Aboav–Weaire relations26,27) is obtained
between mðNf Þ and Nf as;

mðNf Þ ¼ �13:5þ 25:9=Nf : ð9Þ

3.2 Monte Carlo simulation
Simulation were performed on 3-dimentional fcc like

lattice with size of N ¼ 1283. All simulations were per-
formed on the lattice systems with periodic boundary
condition. The number of orientation, Q, is chosen to be
Q ¼ 32. In the following simulation, the value J=kBT is set to
2.0. As an initial microstructure, an orientation between 1 to
Q was assigend to each grain at random. Figure 9 shows an
example of temporal evolution of microstructure. The
formation of grain structure is detected in the early stage of
the simulation. The coasening of large grains by absorbing
small grain is observed. The uniform and isotropic grain
structure is obtained. The average area A, against time t, is
shown in Fig. 10. The average area is found to be propor-
tional to time. The average grain size, Rav, is described as a
power-law kinetics:

Rav / Bt0:5; ð10Þ

where B is a constant which is temperature dependent. The
exponent is the same as that by analytical model by Hillert.3)

Figure 11 shows the variation of the scaled grain size
distribution function for the simulated microstructures. The
distribution function becomes time-invariant at the longer
time. The distribtuions of the number of face, Nf , for
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grain, mðNf Þ and the face number, Nf simulated by the phase field model.

Fig. 9 Microstructural evolution in 64� 64� 64 cells simulated by the

Monte Carlo method.
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individual grains of the simulated microstructures is shown in
Fig. 12. The distribution becomes time-invariant at the
longer time. The frequency increase rapidly for a small
number of faces and peaks at a vlaue of 12 to 14 and decays
quickly.

The relationship between the average number of faces of
grain adjacent to an N-faced grain, mðNf Þ, and the face
number in grains, Nf , is shown in Fig. 13. The linear relation
equal is obtained between mðNf Þ and Nf as;

mðNf Þ ¼ �14:0þ 23:6=Nf : ð11Þ

3.3 Comparison of phase field and Monte Carlo results
Figure 14 shows the scaled normalized grain size distri-

bution obtained by phase field model is compared with that

given by Monte Carlo simulation. For comparison the steady
state distribution predicted by Hillert3) is plotted. It is shown
that the scale grain size distribution is quite good agreement
with Monte Carlo grain size distribution. Krill and Chen
pointed out that the distribution found by Monte Carlo
method by one of the authors is significantly narrower than
that found by the other method. The present results by phase
field and Monte Carlo models are in good agreement with this
distribution. Present distribution fall off to zero quite faster at
large diameter. The reason of this behavior is due to
prevention of coarsening of grain with same orientation.

The grain face distribution by phase field model is in good
agreement with that by Monte Carlo method as shown in
Fig. 15. Again, there is good agreement, well within the
statistical error. The average numbers of faces for grain
structures by the phase field model and by the Monte Carlo
simulation are 13.7 and 13.9, respectively. Overall, there is
excellent agreement between the phase field and the Monte
Calro simulations.

Figure 16 shows comparison of mðNf Þ versus Nf relation
obtained by the phase field model and that by the Monte
Carlo simulation. It is shown that relations by both
simulations are quite similar.

We find that topological results obtained by the phase field
model are in good agreement with those by the Monte Carlo
method. However it should be noted that the grain size and
grain face distributions are affected by the J=kT value. Effect
of the J=kT value on topology of grain structure is left as a
future work.
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Fig. 10 Average area versus time simulated by the Monte Carlo method.
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3.4 Interrelation of the phase field and the Monte Carlo
models

In previous section we found that grain size and grain face
distributions given by phase field model were in good
agreement with those by Monte Carlo method, So we try to
interrelate a master equation of Monte Carlo method to a
continuum model.

In the Monte Carlo algorithm a sequence of successive
configurations are generated with help of (pseudo) random
numbers and a suitably chosen transition probability. An
efficient sampling technique to sample configurations from
phase space was given by Metroplis.28) In the Metropolis
algorithm the successive configurations are not chosen
independently but rather via a Markov chain. A possibility
is to use a Markov process which generates a configuration
fs0g from the knowledge of a configuration fsg. Let
Wðfsg; fs0gÞ be the conditional probability to select fs0g
stating from fsg, thus defining the Markov process. The
successive states are generated with a particular transition
probabilityWðfsg; fs0gÞ, which is chosen so that in the limit of
a large number of configurations the probability PðfsgÞ tends
toward the equilibrium distribution:

Peq ¼ exp½�EðfsgÞ=kBT�=Z; ð12Þ

where E is an internal energy function, kB is the Boltzmann
constant, T is the temperature and Z is a canonical partition
function. A sufficient condition to ensure this is the principle
of detailed balance:

PeqðfsgÞWjðfsg; fs0gÞ ¼ Peqðfs0gÞWjðfs0g; fsgÞ: ð13Þ

The Monte Carlo algorithm may be interpreted via a master
equation as describing a dynamical model with stochastic
process.29) It satisfies the Markovian master equation as:

@Pðfsg; tÞ
@t

¼
X
fs0g

Pðfs0g; tÞWðfs0g; fsgÞ

�
X
fsg

Pðfsg; tÞWðfsg; fs0gÞ:
ð14Þ

The master equation is reduced to a differential equation of
the Fokker–Planck type.30) It will be helpful conceptually to
divide the alloy into microregions, each containing � sites.
We define the average value s�. We can choose the transition
mechanism so that a particular s� changes by þ� (the order
parameter s is non-conserved). This transition mechanism
can be expressed mathematically by writing W in the form:

Wðfsg; fs0gÞ ¼
X
�

Y
�6¼�

�ðs0� � s�Þ

�
Z 1

�1
Rðfs0g; fsgÞ�ðs0� � s� � �Þd�:

ð15Þ

The sum over � assures that the thermal mechanism acts
uniformly on all the sites in the system. The transition rate
Rðfsg; fs0gÞ can be written as

Rðfs0g; fsgÞ ¼ exp �
Ffs0g � Ffsg

2kBT

� �
�ðfs0g; fsgÞ; ð16Þ

where �ðfsg; fs0gÞ is a symmetric function in the initial and
the final state, fsg and fs0g, and Ffsg is a coarse-grained free
energy given by

Ffsg ¼ Efsg � kBT lnWfsg; ð17Þ

where Wfsg is the number of configuration consistent with a
specific choice of average variable s�. Note that the
introduction of the factor Wfsg for computation of the
transition rate required by the use of average variables s�, has
justified replacing the energies by free energies in eq. (17).
Because of the restricted class of transitions (fsg to fs0g)
which is permitted by the form eq. (16), � is a function only
of �, change in s. Since the coarse-grain cell contains a large
number of sites, the change in s corresponding to a single
transition is small. Thus �ð�Þ must be sharply peaked around
� ¼ 0. For convenience, we introduce the jump rate, �,
though Z 1

�1
�2�ð�Þd� � ��1�; ð18Þ

where � is the number of sites in the cell. Thus � is the only
adjustable phenomenological parameter. By defining the
probability current vector by

J� ¼
�

2�

1

kBT

@F

@s�
Pþ

@P

@s�

� �
; ð19Þ

we can rewrite the master equation in the form of the Fokker–
Planck equation as

@Pfsg
@t

¼ �
X
�

@J�

@s�
: ð20Þ
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Fig. 15 Comparison of the face number distribution function simulated by

the phase field model with that by the Monte Carlo method.
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In a continuum representation where ~rr is the position
corresponding to site � the summation on the cells become
integral over the space according toX

�

. . . ¼
1

�ad

Z
d~rr . . . : ð21Þ

It will be also convenient to introduce the functional
derivative notation

@

@s�
¼ �ad

�

�sð~rrÞ
; ð22Þ

where d is the dimensionality of the model and a is the lattice
constant. A Langevin type equation is simply the first
moment of eq. (20). To see this we multiply eq. (20) by s�
and integrate over all the s’s. The result is

@�ss�

@t
¼

Z
�s

@P

@t

� �
s� ¼

Z
J�fsg�s

¼ �
�

2�kBT

� �Z
�s

@F

@s�

� �
P:

ð23Þ

In the continuum representation, eq. (23) becomes

@�ss�

@t
¼ �

�ad

2kBT

� �
@F

@s�

� �
; ð24Þ

where angular brackets denote the statistical average. Let us
suppose that P is a sharply peaked function of the s in the
neighborhood of fsg ¼ f�ssg, so that average with respect to P

of any function of fsg is well approximated by the same
function of f�ssg. Then eq. (24) becomes

@�ss�

@t
¼ �

�ad

2kBT

� �
� �FF

��ss�
: ð25Þ

Thus we obtain the time-dependent Gizburg–Landau
equation for nonconserved order parameter from the master
equation of the Monte Carlo method.

4. Summary

Temporal evolution and morphology of grain structure in
three dimensions were simulated by the phase field and the
Monte Carlo simulations. In order to prevent impingement of
grain of like orientation, a new algorithm was adopted for
both simulations.

The following results are obtained.
(1) Excluding the initial stage, the average area is found to

be proportional to time in the phase field and the Monte
Carlo simulations. The scaled grain size and the face
number distributions become time-independent in both
simulations.

(2) The scaled grain size and the face number distributions
obtained by the phase field simulation are in good
agreement with those by the Monte Carlo method. The
nearest neighbor face correlation similar to the Aboav–
Weaire relation is observed in simulated grain struc-
tures by both methods. The nearest neighbor face
correlation for the phase field model is quite similar to
that for the Monte Carlo method.

(3) Interrelation between the phase field model and the
Monte Carlo method is discussed.
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