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We computed the thermal conductivity of silicon single crystal thin film with a thickness of 25 nm–134 nm at room temperature by non-
equilibrium molecular dynamics simulation. The thermal conductivity was shown to depend on the thickness of the film, and is markedly lower
than that in bulk silicon. The phonon classical thermal conductivity theory, incorporating the Boltzmann transport equation, was used to
establish a phonon scattering model for size dependence. The results show that boundary scattering is very strong for phonon transport in silicon
thin film. [doi:10.2320/matertrans.MAW200710]
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1. Introduction

Ultra-thin single crystal silicon films are becoming more
common in microelectronics and optoelectronics systems.
More needs to be known about the thermal behavior of ultra-
thin films, since significant heat flow can influence device
performance and reliability.1,2) Since semiconductor materi-
als lack conducting electrons, their thermal conduction is
dominated by phonons. Phonon behavior in thin films is
different from that in bulk materials, and phonon scattering at
the boundary will also affect thermal conduction, except for
phonon-phonon scattering. Phonon boundary scattering is
more important at low temperatures, where the phonon mean
free path is longer. However, it may also be very significant
at higher temperatures on a microscale comparable to the
phonon mean free path.3)

Non-equilibrium molecular dynamics simulation (NEMD)
is employed as a means for computing phonon thermal
conductivity.4–8) It introduces artificially hot and cold regions
to induce heat flow. This heat flow creates a temperature
gradient in the system that allows the thermal conductivity to
be determined using Fourier’s Law. The NEMD method is
analogous to experimental conditions, and deals with the
signal itself instead of its average fluctuations in an equilibrium
state using the Green-Kubo method. As a result, it provides a
more direct relation between lattice dynamics and thermody-
namic properties. Schelling et al.9) compared the non-equi-
librium and equilibriummethods for monocrystalline silicon in
detail, and obtained the thermal conductivity of bulk silicon by
extrapolation to an infinite system size from a finite size, but
the paper does not quantitatively demonstrate the mechanism
by which phonon scattering is dependent on size.

In the present paper, a non-equilibrium molecular dynam-
ics simulation was used to compute the thermal conductivity
of single-crystal silicon thin film at room temperature. The
Boltzmann transport equation was incorporated into the
classical phonon thermal conductivity theory to quantify the
size-dependent nature of phonon scattering.

2. Simulation Methodology

We used silicon single crystal with the long direction
perpendicular to the (100) crystallographic plane as a model

system. The equations of motion for all atoms in the system
were integrated using a fifth-order Gear predictor-corrector
algorithm with a time step of 0.5 fs. The Tersoff potential10)

was used to describe the silicon interatomic interaction in this
simulation.

To compute the thermal conductivity of silicon single
crystal, we constructed a three-dimensional simulation cell as
shown in Fig. 1. The origin is located at the center of the cell.
The hot and cold regions importing thermal disturbance are
located at x ¼ �Lx=4 and x ¼ þLx=4 so as to obtain a steady
state heat flux and a temperature gradient. The hot and cold
regions consisted of 10 atomic planes each, approximately
1.4 nm thick. The cross section of the simulation cell is equal
to 5� 5 silicon unit cells, approximately 7.4 nm2. The
periodic boundary conditions are applied in all directions to
form the silicon single crystal thin film. Heat �" is added to
the hot region, and the same amount of heat �" is removed
from the cold region at the same rates. We fixed �" at
approximately 5% of kBT at each time step, corresponding to
1:92� 10�22 J at room temperature. The energy modification
is done by rescaling the atom velocities inside the hot and
cold region,

�new ¼ �old

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�"

E

r
ð1Þ

where �old and �new are the atom velocities before and after
rescaling, �" is amount of energy added (þ) or removed (�)
during the time step, and E is the total kinetic energy of the
hot or cold region.

When the system achieves a steady state, the heat flux Jx is
given by

Jx ¼
�"

2A�t
ð2Þ

Fig. 1 Schematic diagram of three-dimensional simulation cell.
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where A is the cross sectional area perpendicular to the heat
flux and �t is the time step. The factor of 2 arises from the
periodic boundary conditions used here: energy flow from the
hot region to the cold region in two directions.

We divided the simulation cell into a series of slices
perpendicular to the x-axis to compute the temperature in
each local area. Each slice includes approximately 250
atoms, which is sufficient for maintaining a local equilibrium.
The local temperature is given by the Boltzmann statistic

Tj ¼
1

3kBNj

XNj

i¼1

mi�
2
i

* +
ð3Þ

where kB is the Boltzmann constant, Nj is the number of
atoms in slice j, m and � are the mass and velocity of each
atom, and h i is the statistical average in the simulation time
to avoid large temperature fluctuations. Since a heat flux is
imposed and the temperature gradient is measured, the
thermal conductivity can be given by Fourier’s law. � ¼
Jx=ð@T=@xÞ.

3. Results and Discussion

Figure 2 shows the typical time-averaged temperature
profile used to compute the thermal conductivity. This data
was obtained using a 500� 5� 5 silicon unit cell. To reach
the steady state of heat flow, the system first runs 10,0000
time steps (50 ps) to maintain equilibrium at room temper-
ature in the NPT ensemble, then follows with long runs of
140,0000 time step (700 ps) with a heat flux of 2:61�
1010 W/m2 are performed in the NVE ensemble. The non-
linear temperature profile is observed in slices near the hot
and cold regions, which are attributed to the scattering caused
by the hot and cold regions. In the intermediate region, the
temperature profile is fitted with a linear relation. We
therefore measured the temperature gradient about 34 nm
away from the hot and cold regions.

Using the temperature distribution and heat flux, the
thermal conductivity of silicon thin film of different thick-
nesses can be computed by Fourier’s law, as shown in Fig. 3.
The thickness of thin film ranges from 25 nm–134 nm. The
thermal conductivity was shown to depend on the thickness
of the thin film, and is markedly lower than that in bulk

silicon (148W/mK).
To analyze this size dependence of silicon thin film, we

considered the phonon classical thermal conductivity theory
with the contribution of longitudinal and transverse acoustic
phonon mode. The optical branch is sufficiently small to be
neglected.3,11)

� ¼
1

3

X
i¼L;T1;T2

Z �i

T

0

Ciðx!;TÞ�iðx!;TÞ�2i dx! ð4Þ

where the subscripts i ¼ L;T1;T2 indicate the single lon-
gitudinal phonon mode and two transverse phonon modes; x!
is the non-dimensional phonon frequency, x! ¼ h�!=ðkBTÞ,
h� and kB are Planck’s constant divided by 2� and the
Boltzmann constant; T is the system temperature; �i is the
Debye temperature; Ci is the phonon specific heat per unit
volume and unit non-dimensional frequency; �i is the phonon
group velocity; and �i is the relaxation time per unit non-
dimensional frequency.

The phonon relaxation time of thin film �i includes
phonon-phonon scattering and phonon boundary scattering,
and can be given by

�i ¼ �i;bulkFð�; pÞ ð5Þ

where �i;bulk is the phonon relaxation time of the bulk material
and Fð�; pÞ is the boundary scattering reduction factor.

The relaxation times of every phonon mode in bulk
material are given as:11)

�L;bulk
�1 ¼ BL!T

4 ð6aÞ
�T ;bulk

�1 ¼ �TN;bulk
�1 þ ��1

TU;bulk ð6bÞ
�TN;bulk

�1 ¼ BTN!T
4 ð6cÞ

�TU;bulk
�1 ¼ 0 ! < !1

�TU;bulk
�1 ¼ BTU!T

2= sinh x! !1 < ! < !2 ð6dÞ
where BL, BTN and BTU are constants.

The boundary scattering reduction factor F can be
obtained using the exact solution to the Boltzmann transport
equation12)

Fð�; pÞ ¼ 1�
3ð1� pÞ

2�
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1

1
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1
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where � is the ratio of thin film thickness to phonon mean free

Fig. 2 Typical time-averaged temperature profile.
Fig. 3 Size dependence of thermal conductivity of silicon.
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path of bulk material � ¼ d=li;bulk li;bulk ¼ �i;bulk�i; p is the
specular reflection coefficient, which represents the proba-
bility of phonon specular reflection at the boundary.

The two transverse phonon modes are regarded as the
same, and the three phonon mode contributions to the thermal
conductivity of thin film are

� ¼ �L þ 2ð�TN þ �TUÞ ð8aÞ
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where Ci ¼ ðkB=2�2�iÞ=ðkB=h� Þ3.
The phonon classical thermal conductivity theory incor-

porating the Boltzmann transport equation makes the thermal
conductivity of thin film a function of thickness and
temperature. Phonon dispersion is critical in modeling the
thermal conductivity of silicon near room temperature and
above, where phonons with low group velocities become
fully excited,13) so the differential solution to the phonon
frequency spectrum was used, and the boundary scattering
reduction factor was independently computed for each
frequency differential step. The parameters of silicon used
in the model can be seen in Table 1.

Figure 3 shows the result of the analytical model. p is the
probability of phonon specular reflection at the boundary, so
1� p means the degree of scattering at the boundary. When
the thin film thickness is below about 60 nm, there is 100%
phonon scattering at the boundary. The degree of boundary
scattering then falls with increasing thickness, but is still
greater than 60% at about 130 nm. It can be understood that
the phonons have no chance to collide each other in less
thickness, so all the phonons are scattered at the boundary.
With increasing film thickness, the probability of phonon-
phonon collision increases, and fewer phonons are scattered
at the boundary. The experiment data in Fig. 3 come from the

in-plane thermal conductivity of silicon monocrystalline thin
films in Ref. 14) and 15). Although the experiment data is for
in-plane thermal conductivity, it has close relevance to the
NEMD simulation result for out-of-plane thermal conduc-
tivity in the present study.

4. Conclusions

A non-equilibrium molecular dynamics simulation was
used to compute the out-of-plane thermal conductivity of
monocrystalline silicon thin film with a thickness ranging
from 25–134 nm at room temperature. The hot and cold
regions of the simulation cell strongly scatter phonons, and a
non-linear temperature profile was found near the hot and
cold regions. However, the thermal conductivity can be
obtained from the linear region based on Fourier’s law. The
size dependence of the thermal conductivity is very strong.
Classical phonon thermal conductivity theory incorporating
the Boltzmann transport equation can describe the relation
between thermal conductivity, thickness of thin film, and
temperature. The results show that boundary scattering is
very strong in phonon transport within silicon thin film.
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Table 1 Parameters of silicon used in the calculation.

Parameters Value Parameters Value

�L 8:48� 103 m/s11Þ �TU 210K11Þ

�T 5:86� 103 m/s11Þ BL 2:0� 10�24 s/K�3 11Þ

�T (! > !1) 2:0� 103 m/s11Þ BTN 9:3� 10�13 K�3 11Þ

�L 570K11Þ BTU 5:5� 10�18 s11Þ

�TN 180K11Þ

Molecular Dynamics Simulation of Thermal Conductivity of Silicon Thin Film 2421


