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In solidification models, the uncertainty of thermal properties will influence the computing results. In this paper, a non-linear inverse
method is proposed to predict the thermal properties of materials according to the temperature data measured in solidification processes. With
the proposed method, the solid and liquid thermal conductivities and specific heats of materials can be computed simultaneously. Furthermore,
with the effective specific heat method, the inverse scheme can be utilized to calculate the latent heat. Stefan and Neumann problems are used to
test the proposed method. From the computing results, it is proved that the properties can be predicted accurately. After that, the method is
applied to the casting experiments, in which Al, Sn, 90 mass% Sn-10 mass% Pb alloy and A356 aluminum alloy are taken as testing materials.
The computed thermal properties are very close to the values reported in the literature. From these results, it is shown that the proposed method

provides an easy way to predict thermal properties with simple casting experiments.
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1. Introduction

In the solidified analysis, the temperature variation will
directly affect the microstructures of the materials that are
vitally related to their qualities. In the analysis, the thermal
properties used are thermal conductivity, specific heat, latent
heat and so on. The thermal analysis cannot proceed without
those properties. The thermal properties could often be found
in the literature. If the properties cannot be obtained, the
experiment method needs to be used to acquire them.
However, the equipments are generally not cheap or the
experimental environment is severe, and therefore the
properties cannot be obtained easily. In this work, a simple
casting experiment with the proposed inverse method is used
to predict the thermal properties of the casting material.

To predict the thermal properties, inverse methods are
often combined with experiments. In the inverse study of the
thermal conductivity, Kitamura et al.” and Chen? regarded it
as the function of time and space and used the distributed
parameter system to predict its value. Huang and Ozisik®
utilized the Direct Integration and the Levenberg-Marquardt
method to estimate the thermal conductivity in a one-
dimensional heat transfer environment and applied the
related error of the statistics to analyze the reliability.
Alifanov et al.*> used the function prediction method and
Huang® utilized the conjugate gradient algorithm of the
function prediction to solve the inverse problem of the heat
transfer. Chen et al.’ applied the mixed Laplace transform
to solve the linear and non-linear problem of the transient
heat transfer. Zhong'® used Pehlke and Powell’s method to
calculate the thermal diffusion coefficient of the aluminum
alloy. Yang'!!? re-arranged the matrix equation of the heat
transfer problems for liner inverse problems to calculate the
heat source and the thermal conductivities. Those researches
stated above include the predictions of the boundary
conditions (of temperature or heat flux) and the thermal
physical properties such as specific heat and thermal
conductivity. However, few studies worked on the prediction
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of the latent heat. For example, Upadhya et al.'® used the
cooling curves to estimate the latent heat of metals. Kwok'¥
used Yang’s method to compute the thermal conductivity
inversely and built a method to predict the latent heat based
on the Stefan condition.

This paper took the Yang’s method!! as the foundation,
and small variation concept was added to compute the solid
and liquid thermal conductivities and specific heat of
materials simultaneously. The iterative process in the
computation cannot be avoided since the resulting inverse
problem was not linear. With the effective specific heat
method, the inverse scheme was further utilized to calculate
the latent heat. In this work, the Stefan and Neumann
problems were used to test the proposed model. After the test,
the model was applied to predict the thermal properties from
the designed casting experiments.

2. Solidification Models

This paper uses the proposed inverse numerical method
with the designed casting experiment to predict the thermal
properties of the casting metals. Before the proposed method
is applied to real casting experiments, numerical experiments
are firstly utilized to prove the feasibility of the method by
using the Stefan and Neumann problem.'> From the exact
solutions of the problems with given thermal conductivities,
specific heats and latent heat, the measured temperatures are
taken to inversely predict the thermal properties, which are
compared with the given ones. The two solidification
problems, Stefan and Neumann problems, are described as
follows.

2.1 Stefan problem

The physical model covers a one-dimensional semi-
infinite region, as shown in Fig. 1. The initial pouring
temperature is melting point temperature 7y. When ¢ > 0, the
temperature at x = 0 is equal to T,,, which represents the
mold temperature. The solidification process proceeds from
the left to the right. s(¢) is the position of solid-liquid
interface.

In the problem, the basic assumptions are
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Fig. 1 Schematic diagram of the Stefan Problem.

(1) The thermal properties are constant.
(2) The effect of natural convection is ignored.

According to the model and assumptions described above,
only the temperature field of the solid phased needs to be
solved. Its energy equation, initial condition, and boundary
conditions can be written as follows.

0sCps o _ k, V2T (D
ot
T(x,t=0)=T; 2
T5(x,0) =Ty (€)]
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where L is the latent heat. The analytical solution of the
problem is

T=T +Tf_T’”e;f( a ) 6)
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where o is the thermal diffusivity of solid. y is a constant and
can be calculated by the following equation

(Tf - Tm)Cps
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2.2 Neumann problem

The temperature distribution of the Stefan problem is
similar to that of the real solidification of the pure metal.
However, since the pouring temperature is the melting
temperature and there is not temperature variation in the
liquid, the inverse method cannot predict the liquid proper-
ties. Consequently, the Neumann problem is used to
compensate this shortage.

The physical model of the Neumann covers a one-
dimensional semi-infinite region, which is the same as that
of the Stefan problem. The pouring temperature 7, can be
larger than 7} and the mold temperature T, is zero. The basic
assumptions are the same as those of the Stefan problem.
Hence, the governing equation, initial condition, and boun-
dary condition can be written as follows.

oT )
psCps E =k, VT )
aT; )
piCp i kiVT, (10)
Ti(x,t=0)=T, (11)
Ti(x,0) =T, (12)
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At the solid/liquid interface (x = s(¢)),
T,=T=T; (13)
L T L o ds(t) (14)
T Ve M ar
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T,=T, 15)
The analytical solution of the Neumann problem is
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where «; is the thermal diffusivity of liquid. y is a constant
and can be calculated by the following equation
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3. Numerical Method of the Direct Problem

The direction problem of the inverse method is the axial
heat transfer of the cylindrical casting and its governing
equation can be written as

oT 0 oT
Cp—=—1[k—
ot 0x ox

where Cp is the specific heat and k is the thermal
conductivity of the casting. If the thermal conductivity is a
function of temperature, the energy equation is nonlinear and
can be expanded as

(20)

or ok oT L o*T

Poor Taxax T a2

In the work, the numerical method is the finite difference

method. In the formulation of the difference equation, the

centered difference is utilized for the space derivative and the

backward difference is for the time derivative. Accordingly,

the finite-difference formulation of the governing equation
can be written as

n+1 n n+1 n+1 n+1 n+1
Ti B Tz _ k - kifl T; - 7"'71
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At 2Ax 2Ax
1 1 1
e T =21 + T 22)
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By applying the equation to the interior nodes of the
computing domain with the difference equations on the
boundaries, a matrix equation of the nodal temperatures can
be arranged as

[AUT™} = (T") (23)

where [A] is the coefficient matrix. {7""!} and {T"} are the
columnar matrices of nodal temperatures at time step n + 1
and n, respectively. Equation (23) is the basic equation for
the inverse method stated below.
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4. Inverse Method for Thermal Conductivity and Spe-
cific Heat

In this work, an estimated model was built to predict the
specific heat and thermal conductivity simultaneously by
solving the nonlinear system equations iteratively with the
measured temperatures of the interior points in the casting.
The implicit finite difference formulation was applied to the
energy equation combined with the unknown properties. At
first, setting the basic equations of the iterative computations
as below,

Cpmy1 = Cpm + ACp (24)
kg1 = km + Ak (25)
Tm+1 =Tn+ AT (26)

where Cp, k and T are the columnar matrices of the specific
heat, thermal conductivity and temperature. ACp and Ak are
the small variations of Cp and k. AT is the small variation
caused by ACp and Ak. m is the iteration number.

The energy equation can be discretized to obtain the matrix
equation of the direct sub-problem, which is the same as
eq. (23) and is rewritten as

IT,=J 27)

where [ is the coefficient matrix and J is the matrix of given
conditions.

If the specific heat matrix becomes Cp + ACp, the
corresponding temperature becomes 7 4+ AT and the corre-
sponding governing equation can be given by
AT + AT) 82(T + AT)

ot ox?

By ignoring the high order term, the equation can be
rewritten as

F(AT)
k —
ox? ot
With the same difference scheme used in eq. (22), the
difference equation of eq. (29) can be given by

(Cp+ ACp) (28)

HAT aT
cp (AT)

=ACp— 29
Ly (29)

' AT = 2ATH + AT
Ax?
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—Cp = = ACp T (30)

The corresponding matrix equation for all the space grid
points and time steps can be written as

LAT = MACp (31)
where
ACp = {ACp) (32)
=My, Ms,.... M,
MMM )T (33)
Mt = (T —T/Cp (34
= (AT, ATL, ... AT,
SATY AT, AT Y (35)
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At k L .
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If the thermal conductivity matrix becomes k + Ak, the
corresponding temperature becomes 7 + AT and the corre-
sponding governing equation can be given by

AT + AT) 82(T + AT)
P

By ignoring the high order term, the equation can be
rewritten as

= (k + Ak) (37)

AAT) P (AT) (T
c —k = Ak 38
P o2 ox2 G
The difference equation of eq. (38) can be given by
Cp ATPH = ATy AT = 28T + AT
At (Ax)?
T{1+1 _ 2T<n+l + Tn+1
— Ak i—1 i g i+1 (39)
(Ax)

The corresponding matrix equation for all the space grid
points and time steps can be written as

NAT = OAk (40)
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With eq. (31) and (40), the calculation procedures of

thermal conductivity and specific heat are

1. Give the initial guesses of thermal conductivity and
specific heat, Cpg and k.

2. The components of AT are the differences between the
measured temperatures and the computed ones with the
initial or modified thermal conductivity and specific
heat.

3. From eq. (31) and (40), ACpm+1 and Akyy; can be
obtained by applying the Yang’s method.') Repeat the
step 2 and 3 until the convergent values of thermal
conductivity and specific heat are obtained.



Prediction of Thermal Properties In A Solidification Process 2307

5. Prediction of Latent Heat

In this paper, the effective specific heat method'® is used for the prediction of latent heat. In the method, the relationship
between the effective specific heat Cp®/ and temperature of pure metal can be given as

CpL

. 1/ L

C eff — — f

P 2<AP
Cp;s

where T is the melting temperature and 2 x AT* represents
the size of the artificial mushy zone, as shown in Fig. 2. The
energy equation for this method can be written as

0T 0 ( aT
cp — =~k 47)

o ox\ ox
In the prediction of latent heat, Cps and Cpy are assumed to
be known and then the latent heat can be calculated by using
the Yang’s inverse method to estimate the value of Cp?/'.

6. Numerical and Casting Experiments

Before the proposed method is applied to real casting
experiments, numerical experiments are firstly utilized to
prove the feasibility of the method by using the Stefan and
Neumann problems. From the exact solutions of the problems
with given thermal conductivities, specific heats and latent
heat, the measured temperatures are taken to predict the
thermal properties, which are compared with the given ones.

After the numerical experiments, a casting process in a
vertical thermal-insulated mold was used for the proposed
inverse method, which is shown in Fig. 3. Because this
experimental model is to simulate the phenomenon of one-
dimensional heat transfer, a heating coil is wound around the
mold to reduce the radial heat transfer and the bottom water-
cooling copper chill is used to enhance the axial heat transfer.
Thermal couples are installed along the mold centerline and
near the chill. With the proposed method, the measured
temperatures of those thermal couples are utilized to estimate
the thermal properties, which are compared with those from
the literature.

Cpeff“
Cps*+Cpy , _PL; AT
2 DAT* N
Cps
Cp]_ !

Tp- 2AT* Te T+ 2ATH

Fig. 2 The relationship between effective specific heat and temperature of
pure metal.

+C17L+Cp5> Ty — AT* <T < Ty + AT*

T > Tj + AT*
(46)

T < Ty — AT*

7. Results and Discussions

In this work, two numerical experiments is used to test the
proposed method by taking the measured temperatures from
the exact solutions of the Stefan and Neumann problems to
predict thermal conductivities, specific heats and latent heat.
After that, a vertical thermal-insulated mold with a bottom
chill is utilized to simulate the one-dimensional heat transfer
of a casting process. The measured temperatures in the metal
during the casting process are used to estimate the thermal
properties. The computing results of the proposed method are
shown as follows.

7.1 The results of the numerical experiments
7.1.1 Numerical experimental results of Stefan problem
This experiment takes the temperature data from the Stefan
problem to estimate the thermal properties of solid, which are
assumed to be constant in the problem and the inverse
calculation. The domain of Stefan problem is semi-infinite.
This work chooses ten successive grid points from the
domain, whose temperature data are used in the inverse
calculation.
In this experiment, it is expected that the way of taking
temperature data will work for the inverse method and the
real casting experiment. However, the boundary condition of

: insulated .
hecfgﬁlg cover  castin
/ mol

thermo-
couples

T2

NN

/ \

water copper
outlet  chill

water inlet

Fig. 3 Schematic diagram of vertical casting mold with heating coil and
water-cooling copper chill.
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Fig. 4 Temperature distributions versus time of the Stefan problem for six
different locations.

Table 1 Inverse-computed ks and Cpsg of Stefan problem for different A#’s
with Ax = 0.01 m.

At ks Cps Relative error of Relative error of
(second) (W/m-°C) (W/m?-°C) ks (%) Cps (%)
Exact 240.0 3000000 0 0
0.1 239.9 3004262 0.06 0.14
0.5 240.7 3014610 0.28 0.49
1.0 241.8 3028532 0.75 0.95

a casting process is not easy to control. In this study, the
temperature data of the first and final grid points are used as
the boundary conditions and the temperature data of the first
time step are utilized as the initial condition.

The numerical experiment takes aluminum as the testing
material, whose thermal conductivity, specific heat and latent
heat are 240 W/m°C, 3000000 W /m>°C and 96864 J /kg. The
temperature distributions can be obtained from the exact
solutions, which are shown in Fig. 4. In the figure, the
cooling curves at six locations are illustrated.

Firstly, the inverse experiment uses different time step
sizes, At = 0.1, 0.5s and 1, to inversely calculate the heat
conductivity and specific heat with constant space increment
(Ax = constant). The computed and exact (or given) thermal
properties and the relative errors are shown in Table 1. From
the table, it could be found that the inverse results are very
closed to the exact ones and the larger At has the bigger error,
but their differences are small.

Secondly, the experiment uses the different space incre-
ments, Ax = 0.0l m, 0.1 m and 0.5m to inversely calculate
the heat conductivity and specific heat at the fixed time step.
The computed and exact (or given) thermal properties and the
relative errors are shown in Table 2. In the table, the inverse
results are very closed to the exact ones and the smaller Ax
has the smaller error, but their differences are still small.

After the inverse predictions of thermal conductivity and
specific heat, the effective specific heat method combined
with the inverse estimation of specific heat is used to predict
the latent heat. To test and verify the proposed method, the
study uses the different sizes of artificial mushy zone,
AT* = 10°C, 20°C and 30°C, to calculate the latent heat with
Ax = 0.01 m and At = 0.5 second. The computed and exact
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Table 2 Inverse-computed ks and Cps of Stefan problem for different
Ax’s with At = 0.1 second.

Ax ks Cps Relative error of Relative error of
(m)  (W/m-°C) (W/m’-C) ks (%) Cps (%)
Exact 240.0 3000000 0 0
0.01 239.9 3004262 0.06 0.14
0.1 240.2 3009080 0.10 0.30
0.5 2412 3021019 0.50 0.70
Table 3 Inverse-computed latent heat of Aluminum in the Stefan problem

for different AT*’s with Ar = 0.5 second and Ax = 0.01 m.

AT* From literature Inverse-computed relative error
) (J/kg) J/kg) (%)
10 396864 400094 0.814
20 396864 403925 1.78
30 396864 434622 9.51
() [Tt e e
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Fig. 5 Cooling curves of the aluminum cast in the sand mold.

latent heats and the relative errors are shown in Table 3. The

computed latent heats are close to the exact one and the

smaller AT* has the smaller relative error. The relative error

is lower than 2% when AT* is equal to 10°C or 20°C, but the

error goes up to 9.51% when AT* is 30°C.

7.1.2 Numerical experimental results of Neumann prob-
lem

The cooling curves of Stefan problem (Fig. 4) are similar
to those in the real casting experiment'® (Fig. 5). However,
in the Stefan problem, the temperature in the liquid region is
equal to the melting temperature and there is no temperature
variation. The temperature data taken from the liquid region
cannot be used to predict the liquid thermal properties.
Consequently, this work takes the temperature data from the
Neumann problem to inversely calculate the thermal proper-
ties of liquid and solid.

The thermal properties are assumed to be constant in the
Neumann problem and the inverse calculation. Aluminum is
taken as the testing material. The cooling curves of the
Neumann problem at six locations are illustrated in Fig. 6. In
the figure, the cooling rates have little change at the
solidification temperature (660°C) and the cooling curves
do not stay at the temperature over a period of time.
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Fig. 6 Temperature distributions versus time of the Neumann problem.

Table 4 Inverse-computed ks and Cps of the of Neumann problem for
different At’s with Ax = 0.01 m.

At ks Cps Relative error of Relative error of
(Second) (W/m-°C) (W/m?-°C) ks (%) Cps (%)
Exact 240 3000000 0 0
0.1 240.12  3047893.7 0.052 1.596
0.5 240.13 30479745 0.054 1.599
1.0 24135  3062947.5 0.563 2.09
Table 5 Inverse-computed ki, and Cpy, of Neumann problem for different

At’s with Ax = 0.01 m.

At ki CpL Relative error of Relative error of
(Second) (W/m-°C) (W/m?-°C) k. (%) Cpy (%)
Exact 96 2580000 0 0
0.1 96.88 2562939 0.91 0.66
0.5 96.91 2563866 0.95 0.63
1.0 96.96 2565062 1 0.58

The domain of Stefan problem is also semi-infinite. The
number of temperature-measured points and the initial and
boundary conditions taken for the inverse calculations are set
to be the same as those in the Stefan problem. The numerical
experiment of Neumann problem also chooses different
conditions (different Ax’s and At’s) to test and verify the
inverse method. The inversely computed thermal properties
and relative errors are listed in Table 4, Table 5, Table 6 and
Table 7. From those results, it could be found that their
accuracies are as well as the Stefan’s. Basically, the smaller
Ax or At has the smaller relative error.

The predicted method of the latent heat of Neumann
problem is a little different from that of Stefan problem,
because the pouring temperature of Neumann problem is
higher than the melting temperature 7¢. This work takes a
suitable temperature separation (AT*) around 77 as the
artificial mushy zone (Ty — AT* < T < Ty + AT*) to pred-
icate the latent heat. With different sizes of artificial mushy
zone (AT* = 10°C, 20°C and 30°C), Ax = 0.0l mand At =
0.5 second, the computed and exact latent heats and the
relative errors are shown in Table 8. The computed latent
heats are close to the exact one and the smaller AT* has the
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Table 6 Inverse-computed ks and Cps of Neumann problem for different
Ax’s with At = 0.1 second.

Ax ks Cps Relative error of Relative error of
(m) (W/m°C) (W/m*°C) ks (%) Cps (%)
Exact 240 3000000 0 0
0.01 240.12 3047894 0.052 1.596
0.1 240.13 3047926 0.055 1.598
0.5 241.36 3062969 0.565 2.098
Table 7 Inverse-computed k;, and Cpy, of Neumann problem for different

Ax’s with At = 0.1 second.

Ax ki CpL Relative error of Relative error of
(m)  (W/m°C) (W/m’°C) ky, (%) Cpv (%)
Exact 96 2580000 0 0
0.01 96.88 2562939 0.91 0.66
0.1 96.94 2564423 0.98 0.6
0.5 96.99 2565803 1.03 0.55
Table 8 Inverse-computed latent heat of Aluminum in the Neumann

problem for different AT*’s with At = 0.5 second and Ax = 0.01 m.

AT* From literature Inverse-computed relative error
©) (J/kg) (J/kg) (%)

10 396864 398887 0.510

20 396864 400799 0.992

30 396864 411694 3.737

smaller relative error. The relative error is lower than 1%
when AT* is equal to 10°C or 20°C, but the error goes up to
3.74% when AT* is 30°C.

7.2 The results of the casting experiment

Some inverse methods need the boundary condition of
specified heat flux, but it is not easy to measure the heat flux
accurately in the experiment. In this work, the temperature-
measured data are taken as the boundary conditions, which is
easy to apply to the real casting experiment. In the casting
experiment, the vertical thermal-insulated mold and its
surrounding heater can reduce the radial heat transfer and
the bottom water-cooling copper chill can enhance the axial
heat transfer. These could help the casting experiment to
simulate the one-dimensional heat transfer model.

In the casting experiment, the temperature distributions of
the casting are measured by the five thermal couples that are
located along the central line of the cylinder casting with the
same distance between two neighboring thermal couples.
Those temperature data are used to estimate the thermal
conductivity, specific heat and latent heat. Because the
thermal properties of the experimental materials are constant
in the working temperature ranges of these experiments, the
thermal properties are assumed to be constant in the inverse
computation. This study uses aluminum, tin and A356
aluminum alloy as the experimental materials. The separation
of the thermal couples that are measured every 0.5 second
(At =0.5s)is 0.8cm (Ax = 0.8 cm).

The cooling curves of aluminum cast in the green sand
mold casting are shown in Fig. 5.9 The cooling curves of
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Fig. 7 Cooling curves of the aluminum cast in the vertical thermal-
insulated mold.
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Fig. 8 Cooling curves of the A356 alloy cast in the vertical thermal-
insulated mold.

aluminum and A356 aluminum alloy cast in the vertical
thermal-insulated mold are illustrated in Fig. 7 and 8. In
Fig. 5, the cooling curves stay at the melting temperature
over a period of time, but the similar phenomenon can be
found in Fig. 7 or 8. This is because the water-cooling copper
chill can take much more heat than the sand mold.
7.2.1 Predicted liquid thermal conductivities and spe-
cific heats

To inversely calculate the liquid thermal properties, the
temperature data are chosen from the region of large
temperature variation in the cooling curve. At first, the
inverse method is applied to pure metals. The temperature
range used to predict the liquid thermal properties of
aluminum is from 726°C to 796°C. The inverse-computed
thermal conductivity is 96.94 W/m°C and the specific heat is
2564424 W/m3°C. In this work, the reference thermal
properties are taken from reference.!”!® By comparing the
predicted values with the reference ones, their relative errors
are less than 1%. The temperature range of tin is from 327°C
to 427°C and the inverse-computed thermal conductivity and
specific heat are 31.65W/m°C and 1712056 W/m3°C,
respectively. The relative error of the thermal conductivity
is 2.012% and the error of the specific heat is 3.012%.

After the tests for the pure metal, the inverse method is
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Table 9 Inverse-computed latent heat of the experimental data.

From literature Inverse-computed relative error

Metal
(J/kg) J/kg) (%)
Al 396864 408989 3.055
Sn 60697 63046 3.870

applied to alloys. The temperature range of 90 mass%Sn-
10 mass%Pb alloy is from 240°C to 277°C. The computed
thermal conductivity is 40.95 W/m°C with the relative error
of 6.09% and the specific heat is 8013047 W/m3°C with the
error of 0.715%. The temperature range of A356 aluminum
alloy is from 700°C to 813°C. The computed thermal
conductivity is 92.02W/m°C with the relative error of
2.104% and the specific heat is 2939273 W/m*°C with the
error of 0.316%.

7.2.2 Predicted solid thermal conductivities and specific

heats

At first, the inverse method is applied to pure metals. The
temperature range used to predict the solid thermal properties
of aluminum is from 427°C to 627°C. The inverse-computed
thermal conductivity is 243.4 W/m°C and the specific heat is
3048278.3 W/m>°C. Their relative errors are close to 1%.
The temperature range of tin is from 127°C to 227°C and the
inverse-computed thermal conductivity and specific heat are
59.97W/m°C and 1640238 W/m?°C, respectively. The
relative error of the thermal conductivity is 0.616% and the
error of the specific heat is 0.592%.

After the tests of the pure metal, the inverse method is
applied to alloys. The temperature range of 90 mass%Sn-
10 mass%Pb alloy is from 42°C to 87°C. The computed
thermal conductivity is 55.716 W/m°C with the relative error
of 6.132% and the specific heat is 7086116.97 W/m?*°C with
the error of 0.005%. The temperature range of A356
aluminum alloy is from 435°C to 535°C. The computed
thermal conductivity is 170.07 W/m°C with the relative error
of 1.838% and the specific heat is 2265919 W/m?*°C with the
error of 1.052%. From the inverse results stated above, it can
be found that the inverse method is a good way to predict the
thermal conductivities and specific heats of a casting
material.

7.2.3 Predicted latent heat

The cooling curves of the aluminum and A356 aluminum
alloy cast in the vertical thermal-insulated mold of (Fig. 7
and Fig. 8) are similar to those of Neumann problem, in
which the phenomenon of the cooling curve staying at the
melting point cannot be found. This work takes a suitable
temperature separation (A7*) around the melting temper-
ature Tt as the artificial mushy zone (Ty — AT* < T < Ty +
AT*) to predict the latent heat of pure metal. Table 9
indicates the computed latent heats of aluminum and tin and
the relative errors compared with those form the literature.
The relative errors are small and less than 4%.

Since an alloy does not have single melting temperature, it
is not easy to inversely calculate its latent heat. In this work,
the same method used for pure metal is applied to predict the
latent heat of an alloy. For 90 mass%Sn-10 mass%Pb alloy,
six reference melting temperatures are chosen between the
liquidus and eutectic temperatures with AT* = 10°C or
16.5°C to estimate the latent heat, whose results are shown in
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Table 10 Inverse-computed latent heat of Sn-10mass%Pb alloy for
different solidification points of reference with AT* = 10°C and L; =
5596017 /kg from literature.

The reference Inverse- .

. Relative error
temperature point of computed (%)
solidification (d/kg) ¢
11, 216°C 61589 10.06
(3T1 + Tew)/4, 208°C 61870 10.56
(T, + Tew)/2, 200°C 58708 491
(T + Tew)/2, 200°C
AT =16.5°C = 54501 2.61
(freezing range)/2
(T + 3Tew)/4, 192°C 60767 8.59
Teur, 183°C 59430 6.20

Table 11 Inverse-computed latent heat of the A356 alloy experiment for

different solidification points of reference with AT* = 10°C and Ly =
389000J/kg from literature.

The reference Inverse- .

. Relative error
temperature point of computed %)
solidification J/kg) ?
Ty, 615°C 431294 10.872%
(BT + Tew)/4, 604°C 431097 10.822%
(T + Tew)/2, 593°C 401977 3.336%
(Ty + Tew)/2, 593°C
AT =225°C = 389698 0.179%
(freezing range)/2
(Ty. + 3Tow)/4, 582°C 412469 6.033%
Teur, 570°C 403912 3.833%

Table 10. From the table, it is surprised to find that the
relative errors for these six cases are not big. For A356
aluminum alloy, six reference melting temperatures are
chosen between the liquidus and eutectic temperatures with
AT* = 10°C or 22.5°C to estimate the latent heat, whose
results are shown in Table 11. Similar to Table 10, the
relative errors for these six cases are not large. In Table 10
and 11, the reference melting temperature at the middle
between the liquidus and eutectic temperatures with AT*
equal to one half of the freezing range has the smallest error.

8. Conclusion

In this paper, based on Yang’s method, an inverse method
is proposed to predict the solid and liquid thermal con-
ductivities and specific heats simultaneously and then to
estimate the latent heat with the effective specific heat
method. The proposed method is tested and verified by taking
the measured temperatures from the exact solutions of the
Stefan and Neumann problems and the real casting experi-
ments. From the results above, the following conclusions can
be made:
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(1) In the numerical experiments with the Stefan and
Neumann problems, the computed thermal conductiv-
ities and specific heats and the latent heat are very close
to the exact ones. The relative errors can be less than
2%.

(2) In the casting experiment, a thermal-insulated vertical
mold with the bottom water-cooling copper chill is used
to simulate the one-dimensional heat transfer for the
proposed inverse method. The computed solid and
liquid thermal conductivities and specific heats of
aluminum, tin and A356 alloy are close to those from
the literature. Most of the relative errors are less than
2%.

(3) In the casting experiments, the estimated latent of
aluminum and tin are close to those from the literature.
The latent heats of Sn-10mass%Pb alloy and A356
alloy are predicted by using the same method of pure
metal and the computed latent heats are consistent with
the values taken from the literature. With the reference
melting temperature at the middle between the liquidus
and eutectic temperatures and AT* equal to one half of
the freezing range, the relative error can lower down to
2.6% for Sn-10mass%Pb alloy and 0.18% for A356
alloy.
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