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We have performed computer simulations of normal grain growth in three-dimension by using the multi-phase-field (MPF) model. For the
purpose of the acceleration of computation, we have applied both the active parameter tracking algorithm and parallel coding techniques to the
MPF model. The simulation results have been compared with those obtained in previous simulations and a theoretical treatment. We have
reconfirmed that the MPF is a powerful tool for simulating grain growth. Especially, the procedure described in this paper is highly
efficient. [doi:10.2320/matertrans.MRA2007225]
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1. Introduction

Modeling of kinetics of grain growth is essentially
important for designing structural materials. Due to the
difficulty of incorporating topological features into analytical
theories of grain growth directly1–5) there has been increasing
interest in the use of computer simulations to study grain
growth.6–19) Recently, the phase-field models14–19) have been
widely applied to simulating grain growth. Furthermore, in
order to reduce their enormous computational cost, which has
been the main drawback of multi orientation field mod-
els,14–18) a number of algorithms have been proposed.18,20–24)

Especially, Kim et al.18) applied highly efficient algorithm to
the multi phase-field (MPF) model proposed by Steinbach et
al.,25) and justified Hillert’s mean field approximation3) in 3D
normal grain growth. It is well known that, in normal grain
growth, an invariant distribution of scaled grain sizes
develops in its steady state. Further, the grain growth obeys
a power law kinetics with a characteristic exponent of 1/2.26)

Thus, the larger system size and the longer simulation time
are preferable to verify whether simulated microstructures
truly reach the steady state.

In this study, we reconfirm the applicability of the MPF to
the simulations of grain growth. The simulation results will
be compared with those obtained in previous simulations and
a theoretical treatment, especially the results in Ref. 21)
that were obtained by Fan and Chen model14,15) coupled
with dynamic grain-orientation reassignment (DGR) algo-
rithm20–22) and parallel computation techniques. We apply
both the active parameter tracking (APT) algorithm23) and
parallel coding techniques to the MPF model to accelerate
computations and to embody large scale calculations.

2. Method

2.1 Phase-field model
To represent the temporal evolution of polycrystalline

material we utilize the multi phase-field (MPF) model. In
this study, a set of continuous field variables, �1ðr; tÞ;
�2ðr; tÞ; . . . ; �Nðr; tÞ, is defined to distinguish the orientation

of grains, where �iðr; tÞ represents the existence ratio of each
orientation at a position r and a time t. As described later, in
order to avoid coalescence between grains having the same
field number, i, we apply each different number to each
different grain (i.e. N � 1 is assumed to be the total number
of grains in an initial microstructure). Here we outline the
equations from the MPF model, which are essential for
simulating grain growth. Details of the model were described
in Ref. 25), 27), 28):

The sum of each phase-field at any position in the system is
conserved.

XN
i¼1

�iðr; tÞ ¼ 1: ð1Þ

The evolution equation of the phase-field is given by
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where � is the gradient energy coefficient and ! is the height
of the parabolic potential with a double obstacle, assumed to
be isotropic; f Ei is the excess free energy for the each
orientation, assumed to be constant. The number of phases
coexisting in a given point, nðr; tÞ, can be written as

nðr; tÞ ¼
XN
i¼1

siðr; tÞ; ð4Þ

where siðr; tÞ is a step function which satisfies siðr; tÞ ¼ 1 if
�i > 0 and siðr; tÞ ¼ 0 otherwise.

For the purpose of numerical simulation, the set of phase-
field eq. (2) has to be solved numerically by discretizing
them in space and time. The second-order central difference
method and the simple explicit Euler equation are used for
discretization with respect to space and time, respectively.

2.2 Active parameter tracking algorithm
In the MPF model, in order to perform simulations with
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avoiding the coalescence between grains which have the
same field number, a number of algorithms have been
proposed.18,20–24)

More recently, Vedantam and Patnaik23) have devised an
efficient new algorithm called active parameter tracking
(APT) algorithm for solving MPF equations numerically.
Gruber et al.24) and Kim et al.18) also devised essentially the
same algorithm. In the MPF model, at every grid point, only a
few field variables are nonzero and they contribute toward the
evolution of grains; these nonzero variables are referred to as
active field variables. In the APT algorithm, we only consider
the evolution of the active field variables at each grid point
instead of all the N variables. In this study, we apply both the
APT algorithm and parallel coding techniques to the MPF
model. The parallelization of the APT algorithm is fairly easy
as compared to that of the DGR algorithm. The only
requirement is that the data arrays located along the surfaces
of each adjacent message-passing interface (MPI) domain
communicate with each other at every time step.

The number of active field variables is used as the value of
nðr; tÞ. Because the total amount of memory consumption is
approximately proportional to the maximum number of
nðr; tÞ—nmax, we apply following procedures depending on
the value of nðr; tÞ in order to reduce the value of nmax:

If nðr; tÞ < nmax; we introduce the threshold value, �th, for
f�iðr; tÞgði ¼ 1 . . .NÞ. Further, if the value of �iðr; tÞ becomes
smaller than that of �th, �i is forced to be inactive at the
position r and the time t. The value of �th is set to be
1:0� 10�40.

If nðr; tÞ ¼ nmax; the active field variable, �i, which has the
smallest value among the active field variables is forced to be
inactive at the position r and the time t.
The value of nmax was determined from preliminary compu-
tation as nmax ¼ 6. Note that the condition described by
eq. (1) is updated at the end of each time step for all grid
points. Before the operation, the values �iðr; tÞ � 0 and
�iðr; tÞ � 1 are cut off. In the case of the simulation of the
normal grain growth, the memory consumption was 1/3 of
that in Ref. 21) (Fan and Chen model with the DGR
algorithm and the parallel coding techniques). The difference
will be larger with the introduction of anisotropy into grain
boundary properties.

2.3 Model parameters and simulation procedure
All calculations are performed on 3D lattice with periodic

boundary conditions. The target materials are not specified in
this paper. However, in order to express simulation results in
actual units such as [s] and [m], physical properties are
assumed as follows: The phase-field mobility is set to be
M� ¼ 4:0� 7=6� 10�8 � 4:67� 10�8[m3J�1s�1]. It is as-
sumed to be a constant value in a simulation run. The
physical grain boundary mobility is calculated to be Mp ¼
2:27� 10�14[m4J�1s�1] by using other physical properties
described in this section.18,27) The value of grain boundary
energy is � ¼ 1:0[J/m2]. The lattice step size �x is set to be
1:0� 10�7[m] and the boundary width, 2�, is assumed to be
6:0��x.

Hereafter, length and volume are expressed in [m] and
[m3], respectively. Then the parameters � and ! are
calculated as � ¼ 4=�ð3�x�Þ0:5 and ! ¼ 2�=3�x, respec-

tively.27) We also perform simulations with the condition
2� ¼ 7:0��x to evaluate the effects of the boundary width.
In this case, the value of M� is set to be M� ¼ 4:0�
10�8[m3J�1s�1] in order not to change the value of Mp. A
step for time integration, �t of 6:5� 10�2[s] is employed.
The system size of ð5:12� 10�5Þ3 (134217728 grid points) is
employed throughout this paper.

The initial microstructure for computation are obtained by
putting spherical grains on the randomly sampled positions in
the system with a constant excess free energy, f E1 > 0; the
excess free energy for the spherical grains is set to be
f Ei ¼ 0ði ¼ 2; . . . ; 50001Þ. The number of grain embedded in
the system is 50000. All calculations in this paper have been
performed on the Numerical Materials Simulator (HITACHI
SR11000) at National Institute for Materials Science (NIMS)
with 2 nodes (number of central processing units: 16� 2 ¼
32, memory for application codes: 24� 2 ¼ 48GB). The
computation for 260[s](4000�t) required approximately 10
hours and 24 hours for 650[s](10000�t).

3. Results and Discussion

In order to get statistical values such as grain size and grain
face distributions, three runs of simulation were performed
with the boundary width condition 2� ¼ 6:0��x. And only
a run of simulation was performed with the condition,
2� ¼ 7:0��x. The computational time became smaller with
a dcrease in the boundary width especially in the early stage
of simulation. However, the effect of boundary width on the
computaional time became smaller with a decrease in the
number of grains. It is attributed to a decrease in the boundary
regions only at which the computation of eq. (2) is required.
Hereafter, we mainly refer to the results with the boundary
condition 2� ¼ 6:0��x.

The temporal evolutions of microstructure with the
boundary width condition 2� ¼ 6:0��x is shown in
Fig. 1. The number of grains in the system, Ng, is 35174 at
t ¼ 32:5[s](500�t) and 1185 at t ¼ 650[s](10000�t). In
order to analyze simulated microstructures we have tried both
the methods utilized in Ref. 21)) (i.e., cluster enumeration)
and that utilized in Ref. 18)) (i.e., simple summation); in
Ref. 21), a function Oðr; tÞ was defined to perform cluster
enumeration29) as follows: When �qðr; tÞ had the maximum
value among all field variable at a lattice point, r, Oðr; tÞ was
set to be the variable number, q. On the other hand, in
Ref. 18), the volume of the grain with a field variable name
was obtained by simply summing up all the values of the
variable with the name without cluster enumeration; this
easiness of the calculating topological characteristics of
grains is an advantage of MPF+APT scheme. As expected,
the number of grain estimated by the simple summation has
become larger. However, the difference in the estimation has
been negligibly small. For example, the difference in the
number of grain at t ¼ 650[s] was only two. Thus, we have
mainly used the cluster enumeration; the simple summation
was used for only obtaining Fig. 5.

The square of average grain radius, hri2, versus simulation
time is shown in Fig. 2, where we have defined the value of
hri as hri ¼ hð3vi=4�Þ1=3i and vi is the volume of each grain.
The value of hri2 is found to be proportional to simulation
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time. The kinetic coefficient k is obtained as k ¼ 1:04�
1:0�14 (for 2� ¼ 6:0��x-Case1) by a least-squares fitting.

Next, the grain size distributions (GSDs) normalized by
the value of hri are plotted in Fig. 3. In Ref. 21), we defined
the average grain radius as hr0i ¼ ð3Vall=4�NgÞ1=3, where Vall

was the volume of the system. However, the value of hr0i is
not always identical to the value of hri if the distribution has a
finite width. Therefore, we also plot the GSDs those were
obtained in Ref. 21) normalized by hri instead of hr0i. In this

figure, s0 represents the dimensionless time used in Ref. 21).
Except for the distribution at t ¼ 65 s, the shape of GSDs
is very similar, although the distribution at t ¼ 400 s0

(8000step) is highly fluctuated due to an insufficient number
of grains.

We compare the GSD from this study with those from
previous phase-field simulations and a mean field treatment.
Figure 4 shows the distributions from phase-field simulation
by Suwa et al.21) (Fan and Chen model+DGR), Kim et al.18)

(MPF model, symbols were taken from Fig. 15 in Ref. 18))
and this study (MPF model+APT algorithm), where curve
drawn by the thick line is the 3D distribution from the Hiller
theory.3) Although Fan and Chen model was utilized in
Ref. 21) these two GSDs look very similar. Compared with
GSD from Kim et al., the GSD from this study is symmetric
and slightly broader. The model and simulation condition in
Ref. 18) is almost identical to those in this study. One
possible cause of the dissimilar distributions is the difference
in the simulation time. In this study, the time required to
reach steady state is around 390[s](5000�t). Note that the
achievement to the steady state is judged by the micro-
structural entropy, Me,30) and the second moment of face

t=32.5s (500 ∆ t=650s (10000t) ∆ t)

(b)(a)

Fig. 1 Simulated microstructural evolution in 5123 cells; (a) 35174 grains at t ¼ 32:5[s] and (b) 1185 grains at t ¼ 650[s]. All

microstructures in this figure were obatined with the boundary width condition 2� ¼ 6:0��x.
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Fig. 2 The square of average grain radius, hri2, versus simulation time.

The thick straight line is the linear least-square fitting for a simulation run

(2� ¼ 6:0��x-Case1, t � 65[s]).
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Fig. 3 Evolution of the grain size distribution (GSD) during the 3D normal

grain growth. For comparison, we also plot the GSD that were obtained in
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Fig. 4 The steady-state grain size distributions from various phase-field

simulations of the 3D normal grain growth; Suwa et al.21) (Fan and Chen

model+DGR), Kim et al.18) (MPF model, symbols were taken from

Fig. 15 in Ref. 18)) and this study (MPF model+APT algorithm). The

thick curve depicts the 3D distribution predicted by Hillert theory.3)
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distribution function,�2
31) because they take a constant value

at the steady state. We also note that the step for time
integration in this study corresponds to 98.3% of the step in
Ref. 18) if we represent the step in the same unit. The
microstructural entropy of these distributions are calculated
as 2.74 (this study), 2.75 (Suwa et al.), 2.69 (Kim et al.) and

2.66 (Hillert theory).
In Hillert theory,3) the growth rate of each grain is

approximated by the mean-field treatment as

dr

dt
¼ �Mp�

1

rc
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Fig. 5 Simulation test of mean-field approximation [eq. (5)] in the 3D normal grain growth. The results obtained from a simulation run

(2� ¼ 6:0��x-Case1) at (a) t ¼ 260[s] and (b) t ¼ 650[s] are shown in this figure, where 4165 grains and 1185 grains are shown as dots

in a rdr=dt vs r=hri plane. The dr=dt values were measured from the volume changes during a single time step. The thick straight and

dashed line are the least-square fitting into a linear (LINE) and a quadratic polynomials (QUAD), respectively.

Parallel Computer Simulation of Three-Dimensional Grain Growth Using the Multi-Phase-Field Model 707



where rc is the critical grain radius to be determined later.
And � is a constant of the order of unity which represents the
approximations inherent in the assumed idealized geometry
of the model. Kim et al.18) validated the mean-field eq. (5) by
plotting rdr=dt values of grains against r=hri. According to
Kim et al., the results obtained from the simulation (for
2� ¼ 6:0��x-Case1) at (a) t ¼ 260[s] and (b) t ¼ 650[s]
are shown in Fig. 5, where 4165 grains and 1185 grains are
shown as dots in a rdr=dt vs r=hri plane. The dr=dt values
were measured from the volume changes during a single time
step. The distributions of the dots in Fig. 5-(a),(b) can be well
represented by a straight line which is the linear least-square
fitting over all the points appearing in the each figure.

In these figures, we can define the critical radius, rc, as the
point of intersection for rdr=dt ¼ 0 and the fitting line. They
are obtained as 1:14r=hri and 1:15r=hri for t ¼ 260[s] and
650[s], respectively. They are very close to the value
9=8r=hri ¼ 1:125r=hri predicted by Hillert theory and
obtained in Ref. 18)). When we define the value of rc as
described above, we can also obtain the value of �Mp� as the
intercept for rdr=dt axis. Thus, they are 2:56� 10�14[m2/s]
and 2:45� 10�14[m2/s] for t ¼ 260[s] and 650[s], respec-
tively. Although they may include other than geometric
factor such as computation errors, the values of � are
estimated as 1.13 and 1.08. In Fig. 5, the least-square fitting
into a quadratic polynomial is also plotted as a dashed
line.32,33)

Next, we refer to the face distribution related results. The
average face number shows the value of 14.0 at t ¼
32:5 s[500�t]. It decreases with simulation time and ap-
proaches to a constant value of 13.7 at around t ¼ 325

s[5000�t]. The grain distribution with the number of faces
per grain in Fig. 6, where the results from the phase-field
simulation by Suwa et al. (Fan and Chen model+DGR),
Kim et al. (MPF model, symbols were taken from Fig. 16
in Ref. 18)) and this study (MPF model+APT algorithm) are
compared. Although the face number at which the distribu-
tions have a maximum value is slightly different, they are
almost identical. Finally, we consider the relationship
between the average number of faces of per grain adjacent
to an N-faced grain, mðNf Þ, and the face number in grains, Nf ,
at t ¼ 390[6000�t] (for 2� ¼ 6:0��x-Case1). The linear
relation similar to the Aboav-Weaire relations34,35) is calcu-
lated between mðnÞ and Nf by the linear least-square fitting
for simulation results as mðNf Þ � Nf ¼ 13:6Nf þ 27:2. The

relation is very close to those of mðNf Þ � Nf ¼ 13:7Nf þ
24:7 and mðNf Þ � Nf ¼ 13:3Nf þ 23:4 obtained in Ref. 21)
and Ref. 11), respectively.

4. Concluding Remarks

We performed computer simulations of normal grain
growth in 3D by using the MPF model. For the purpose of the
acceleration of computation, we applied both the APT
algorithm and the parallel coding techniques to the MPF
model. We have reconfirmed that the MPF is a powerful tool
for simulating grain growth. Especially, the procedure
described in this paper is highly efficient. As mentioned
in Section 2.2, the implementation of the parallelization
was quite easy. Further, the memory consumption of our
procedure was 1/3 of that in Ref. 21) (Fan and Chen model
with the DGR algorithm and the parallel coding techniques)
even for the simulation of the normal grain growth. The
difference will be larger with the introduction of anisotropy
into grain boundary properties. As pointed out by Kim et
al.,18) the easiness of the calculating topological character-
istics of grains is an advantage of MPF+APT scheme.
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