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A dislocation bow-out model has been developed to explain the strength of ultra-fine grained (UFG) materials with grain size roughly
between 20 nm to 500 nm. In the model, perfect dislocations are assumed to be nucleated at grain-boundary sources and bow out between two
pinning points on a boundary. Yielding is considered to occur when a dislocation takes a semi-circular shape under applied stress. Statistical
consideration is introduced to evaluate the most probable pinning-point distance as a function of grain size. Comparison with experimental
results is made for fcc UFG metals. It is found that yield stress as well as thermal activation parameters can be explained reasonably by the
present theoretical model. [doi:10.2320/matertrans.MRA2008012]
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1. Introduction

Plastic deformation characteristics of ultra-fine grained
(UFG) and nano-cystalline (NC) materials have been paid
much attention. Cheng et al. classified the deformation
mechanisms of UFG and NC materials into four different
regimes.1) They have called the smallest grain-size regime
as ‘‘Nano-1’’ for grain sizes smaller than, say, 10 nm. In
this regime, plastic deformation occurs by grain-boundary
processes, such as grain-boundary sliding or Coble creep.
Dislocation activities are not important here. It is in this
regime that the so-called inverse Hall-Petch (H-P) relation
or H-P breakdown for grain-boundary strengthening is often
observed.2–11)

As grain size becomes larger than about 10 nm, i.e., in the
‘‘Nano-2’’ regime, grains are sheared by twinning or by
Shockley partial dislocations, leaving stacking faults behind
them. Since the partial dislocations have smaller Burgers
vector than that of perfect dislocations, they can bow out and
move more easily than the perfect dislocations under smaller
applied stresses.12–14) The third regime is defined as the
‘‘UFG’’ regime and starts with grain size larger than about
20 nm for Ni14) and 20 to 35 nm for Al.1,15,16) In this regime,
lattice dislocations are nucleated in grain boundaries, and
shear the grains. Even when the stacking fault energy is
small, a trailing partial can be nucleated before the entire
grain is sheared by a leading partial. Therefore, the plastic
deformation in the UFG regime occurs by the motion of
perfect dislocations that are emitted from the grain-boundary
sources. Lastly comes the fourth ‘‘Traditional’’ regime when
the grain size becomes larger than several-hundred nano-
meters to 1 mm, depending on the material. Here, many in-
grain as well as grain-boundary dislocation sources become
available to produce plastic deformation, and ‘‘normal’’ metal
behaviour is expected.

In the present study, we will focus on the UFG regime with
grain diameter d roughly between 20 nm to 500 nm. Many
theoretical models on the strength of the UFG materials have
been developed and most of them incorporate the H-P-type

d�1=2 dependence of the critical resolved shear stress (CRSS)
into the models.9,17–23) For theories that do not directly deal
with the H-P relation, grain boundaries are regarded to be
potential dislocation sources24–26) and the bow-out of a
dislocation from a grain-boundary source is considered to
determine the CRSS.1,5,27) Pinning points for the dislocation
bow-out lie on a slip plane at a grain boundary and act as
obstacles against dislocation motion. They may be boundary
ledges, triple points or segregated impurity atoms. Such
dislocation bow-out models naturally predict the d�1 depend-
ence of strength and the resultant CRSS may be too large
to explain experimental values.12–14,28)

Scattergood and Koch5) have suggested that dislocations in
UFG and NC materials should not create long-range elastic
fields around them. The grain boundaries are generally
regarded to be incoherent and screen the elastic fields around
a dislocation. Therefore, the outer cutoff distance of the
dislocation elastic field becomes at most d.5) If this fact is
taken into account, discussion can be modified to predict
lower CRSS values than those expected from the traditional
d�1 dependence.1,27) In the present study, we will follow this
idea to estimate the yield stress of UFG materials.

As mentioned above, when dislocations are emitted from
grain boundary sources, they bow out between boundary
pinning points and CRSS is identified as the stress necessary
for a dislocation to bow out to a semi-circular shape. Then,
the local bowed-out segment of the dislocation should have
the self energy and line tension that are even smaller than
those predicted by Scattergood and Koch. In fact, to express
the energy of a looped or semi-circular dislocation, the outer
cutoff length in the logarithmic term of the self energy is
often evaluated to be equal to the radius of the dislocation
curvature.29–31)

In the present study, the main focus will be placed upon the
proposal of a strengthening mechanism in the UFG regime
with grain size roughly between 20 nm to 500 nm. As
mentioned above, perfect dislocations emitted from grain
boundaries are considered to travel though the whole grain to
cause plastic deformation.
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2. Theoretical Model

2.1 Line tension and critical resolved shear stress
Hereafter, we will consider the case that the grain size of

UFG materials is small enough so that in-grain dislocation
sources are practically absent and only grain-boundary
sources are active. The line tension TL of the perfect
dislocation is written using the string model as

TL ¼
�b2

4�
ln

R

r0

� �
¼

�b2

4�
ln

L

2r0

� �
; ð1Þ

where � is the elastic modulus, b the magnitude of the
Burgers vector, R the outer cutoff radius and r0 the inner
cutoff radius representing the dislocation core size. The
dislocation character (screw or edge) will not be taken into
account in the present analysis. As mentioned in Introduc-
tion, to obtain the last term, the outer cutoff R has been set
equal to the radius of the dislocation curvature, i.e., R ¼ L=2,
where L is the distance between pinning points (or the
dislocation source length) at grain boundaries. Scattergood
and Koch have shown that their bow-out model can explain
experimental results reasonably when r0 is taken in the
range 2b � r0 � 10b.5) Therefore, we will assign r0 ¼ 5b in
the present study. Then, eq. (1) can be rewritten as

TL ¼
�b2

4�
ln

L

10b

� �
ð2Þ

From eq. (2), the CRSS �c is determined by the stress
necessary for the dislocation to bow out in a semi-circular
shape from the grain boundary as

�c ¼
TL

bðL=2Þ
¼

�b

2�L
ln

L

10b

� �
; ð3Þ

Cheng et al.5) have adopted a similar but more detailed
expression of the CRSS derived by Hirth and Lothe.31)

Their eq. (1) for edge dislocations is written in our notations
as

�c ¼
�b

2�Lð1� �Þ
1�

3

2
�

� �
ln

L

b

� �
� 1þ

1

2
�

� �
; ð4Þ

where � is the Poisson ratio. Assuming b ¼ 0:3 nm and
� ¼ 0:3, the values of �c calculated from eqs. (3) and (4)
were compared. It was found that they differ by at most 15%
within a wide range of 15 nm � L � 10 mm. Therefore, for all
practical purposes, eq. (3) is much simpler but as good an
expression as eq. (4). This again justifies the assignment of
r0 ¼ 5b in this study.

2.2 Source length at grain boundaries
It should be noted that �c in eq. (3) cannot exceed the

theoretical shear strength of about �=30. Examination using
various representative values for constants reveals that this
is always assured for eq. (3). On the other hand, if the
conventional expression of the Orowan stress �OR ¼ �b=L is
adopted, the condition of �OR � �=30 is satisfied for
L � 30b. Therefore, the lower bound of L is roughly
estimated as 10 nm for many metals with b � 0:3 nm. Since
L cannot exceed the grain size d, the source length, or the
distance between the grain-boundary pinning points, lies
within the range

� � L � d; ð5Þ

with � ¼ 10 nm. It is true that this assignment of � ¼ 10 nm
is rather conventional. However, as will be shown in section
2.4, the present discussion does not strongly depend on the
chosen length of � .

2.3 Statistical distribution of pinning points
Figure 1 shows the bowing out of perfect dislocations

emitted from grain-boundary sources when a shear stress �
is applied in the material. If the distance between pinning
points is large, such as A in Fig. 1, the dislocation can
bow out in a semi-circular shape and � becomes the CRSS
for the long-range movement of the A dislocation. On the
other hand, if the pinning-point distance is small such as B,
only a small bow-out is possible and a larger stress is
necessary before the B dislocation can take a semi-circular
shape.

Statistically speaking, the source length L that obeys the
condition (5) is randomly distributed on grain boundaries and
is a fraction of the grain diameter d so that L ¼ cd, where
c is positive and does not exceed unity. Therefore, we can
assume that any pinning-point distance L, or any value of c,
satisfying the above condition (5) is equally possible; the
larger L causes smaller �c.

If the average source length hLi is found as a function of d,
insertion of this hLi into L in eq. (3) should give the most
probable CRSS for a given d. Then, the problem now is to
find the value hLi. This can be done using statistics as
follows.

Let us approximate n � d=� as an integer representing the
number of potential pinning-point sites at an intersection
between a grain boundary and a slip plane. We have

L ¼ cd ¼ cn�; 0 < c < 1: ð6Þ

As a simple example, we will first consider the case where
equally-spaced (with separation �) four (4) potential pinning
point sites exist at an intersection line between a grain
boundary and a slip plane, as shown in Fig. 2. When a
dislocation bows out between any two of the four sites,
there are

4C2 ¼
4!

2!ð4� 2Þ!
¼ 6 ð7Þ

d

cd 

A

B 

Fig. 1 Bowing out of dislocations emitted from grain-boundary sources

under an applied stress �. The dots indicate the pinning points.
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different ways to choose the two pinning points. Among
them, one has the distance 3� , two have 2� and three have � .
Since these six choices are assumed to occur with equal
probabilities, the average separation hLi between the pinning
points is calculated as

hLi ¼
ð3� �Þ þ ð2� 2�Þ þ ð1� 3�Þ

4C2

¼
5

3
�: ð8Þ

This analysis can be generalized easily for a grain size of
d ¼ n� and the average separation hLi and average coef-
ficient hci of c are obtained as

hLi ¼
n� þ ðn� 1Þ2� þ ðn� 2Þ3� þ . . .þ 1 � n�

nC2

¼
nþ 2

3
� ¼

d þ 2�

3
; ð9Þ

hci ¼
hLi
d

¼
nþ 2

3n
¼

1þ 2ð�=dÞ
3

: ð10Þ

The number of grains in a usual UFG tensile specimen is
extremely large. In such a case, the average value hLi in
eq. (9) is statistically interpreted as the most probable
separation between the pinning points. For readers of interest,
the statistical interpretation is shown in Appendix.

2.4 Yield stress
From eqs. (3) and (9) together with the Taylor factor

M ¼ 3:06, the tensile yield stress �y of fcc metals is
expressed as

�y ¼ M�c ¼
3M�b

2�ðd þ 2�Þ
ln

d þ 2�

30b

� �

�
3�b

2ðd þ 2�Þ
ln

d þ 2�

30b

� �
: ð11Þ

Here, the approximation ofM=� � 1 is adopted to obtain the
last term. Since all the quantities in eq. (11) are either known
or already assigned above (� ¼ 10 nm), we can calculate the
values of �y and compare them with those obtained in
previous experiments. Trial calculations of eq. (11) for
b ¼ 0:3 nm and 20 nm < d < 500 nm revealed that wide
variation of � from 2 nm to 20 nm caused only less than 15%
change in the �y values. Therefore, we can safely assign
� ¼ 10 nm for eq. (11) to compare the predicted yield stress
with experimental values.

3. Comparison with Previous Studies

3.1 Yield stress
Figures 3, 4 and 5 show the H-P plots of predicted yield

stress �y from eq. (11) and the experimental data available
in the literature for Ni,10,11,32) Cu13,19,33,34) and Al,35–37)

respectively. Constants in eq. (11) used to calculate �y are
listed in Table 1. Assuming that the yield stress for single
crystals of the fcc metals are negligibly small, eq. (11) was
used without any additional terms. We can immediately
notice from Figs. 3 to 5 that the theoretical curves well
reproduce the H-P behaviour at larger grain sizes. The
agreement between the model predictions and experimental

grain boundary

slip plane

λ

Fig. 2 Equally-separated four pinning points at an intersection between a

grain-boundary plane and a slip plane.
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data are also reasonably well, at least no worse than any
other existing models can predict aside from the empirical
H-P straight line. Although the data points for Ni deviate
from the theoretical curve for grain sizes smaller than about
20 nm, this is considered to be natural since our model can be
applied to the UFG regime of grain size roughly between
20 nm to 500 nm, as mentioned previously.

A similar dislocation bow-out model has been used by
Scattergood and Koch to explain the so-called inverse H-P
relation.5) As explained earlier, they have adopted the grain
size d as the outer cutoff length in the logarithmic term in
eq. (1). In the present study, usage of eq. (11) causes a shift
in the peak stress towards smaller grain size regions, resulting
in the absence of the inverse H-P relation in Figs. 3 to 5.
Cheng et al. on the other hand, have treated the source length
L ¼ cd in eq. (6) as an adjustable parameter.1) As c becomes
larger, the inverse H-P behaviour becomes less significant.
They have argued that the source length should become a
smaller fraction of the grain size as the grain size increases.
However, they could not discuss any further the dependence
of c on the grain size. In the present study, on the contrary, the
grain-size dependence of c was statistically and analytically
incorporated, as shown in eq. (10).

3.2 Strain-rate sensitivity and activation volume
It is well known in fcc NC and UFG materials that strain-

rate sensitivity exponent m defined as

m �
@ ln �

@ ln _""

� �
T

¼
1

�

@�

@ ln _""

� �
T

; ð12Þ

increases as grain size becomes smaller.20,22,29,38–46) Here, �
is the flow stress, _"" the strain rate and T the temperature.
Typical values of m at grain sizes d ¼ 20{30 nm are m ¼
0:03 to 0.04 for Cu20,21,28,33,41) and 0.01 to 0.02 for Ni.43,45,46)

Since these values are still too small for grain-boundary
sliding (m ¼ 0:5) or Coble creep (m ¼ 1), these grain-
boundary phenomena are unlikely to be the rate-controlling
processes in the UFG regime unless strain rate is very small
and/or temperature is high.20,21,34,41,46) Instead, thermally
activated dislocation motion to overcome short-range obsta-
cles is considered to be more probable in the UFG regime and
some possible mechanisms have been proposed. For exam-
ple, we find in a recent overview by Dao et al.28) such
possible mechanisms as punching of a mobile dislocation
through a dense bundle of excess grain-boundary disloca-
tions, defect-assisted dislocation nucleation, de-pinning of a
dislocation that is pinned at boundary obstacles, etc. All of
these mechanisms must also explain a small activation
volume in NC and UFG materials as well as the temperature
dependence of strength.

As an additional analysis, let us examine what can be said
for the thermally activated dislocation process using the
present model. The activation volume v� is written as

v� � kT
@ ln _��

@�

� �
T

¼ M kT
@ ln _""

@�

� �
T

¼ M v��; ð13Þ

where kT has its usual meaning, _�� the shear strain rate, � the
resolved shear stress and v�� the measured activation volume
during plastic deformation under uniaxial stress �. From
eqs. (12) and (13), we have

v� ¼
M kT

m�
: ð14Þ

The physical meaning of v� is the activation area s� times the
Burgers vector b:

v� � s�b ¼ l�d�b; ð15Þ

where l� is the length of a dislocation that contributes to a
thermal activation event for overcoming a short-range
obstacle and d� is the activation distance that scales with
the size of the obstacle.

Figure 6 shows a dislocation A that is about to bow out in a
semi-circular shape between two pinning points P and Q with
separation L. If a thermal activation event occurs locally to
overcome the obstacle P, the dislocation A is un-pinned and
moves to the position B. Once the configuration B is realized,
the curvature of the dislocation A decreases and the long-
range motion of the dislocation becomes possible, say,
through C and even further. The activation area associated
with this unpinning event is defined as the area between the
dislocations A and B and is roughly estimated as s� �
fðL=2Þ � bg=2 ¼ Lb=4. Therefore, we have

v� ¼ s�b ¼ Lb2=4 ¼ ðd þ 2�Þb2=12; ð16Þ

where the average pinning-point separation hLi in eq. (9) is
substituted for L to obtain the last term. From eq. (16)
together with � ¼ 10 nm, as assumed in section 2.2, we
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Fig. 5 Yield stress �y as a function of the inverse square root of the grain

size d in Al. The solid line shows the model prediction of the present study

and circles are experimental data available in the literature.35–37) The data

by Nijs et al.37) are for an Al-Mg alloy.

Table 1 Values for constants used to calculate �y from eq. (11).

Ni Cu Al

Shear modulus,

�/GPa
76 48 26

Burgers vector,

b/nm
0.249 0.255 0.284

Source length,

�/nm
10 10 10
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can obtain the grain-size dependence of the activation
volume. The curve in Fig. 7 shows the calculated activa-
tion volume as a function of grain size for Cu. The data
points (circles) in the figure were taken from the exper-
imental results summarized by Chen et al.33) As can be seen,
the agreement between the theory and experiment is
excellent.

A similar plot for m is possible by using eqs. (11), (14) and
(16), as shown in Fig. 8. To draw the curve, M ¼

ffiffiffi
3

p
was

assigned in eq. (14). This assignment is merely for the
purpose of comparison with the experimental results (circles
in Fig. 8) summarized by Chen et al.33) who usedM ¼

ffiffiffi
3

p
in

their analysis. We again find the excellent agreement.

4. Concluding Remarks

From the present study, we have found that the dislocation
bow-out model can reasonably explain not only the observed
strength but also the grain-size dependence of the activation
volume and strain-rate sensitivity. During the course of this
study, the H-P relation was not used nor postulated. This may
indicate that the observed H-P relation is just fortuitous and it
is not a prerequisite for the deformation mechanism of NC

and UFG materials. Further study is necessary to reveal the
grain boundary contribution to the strength.

Our discussion on the thermally activated dislocation mo-
tion in Section 3.2 is incomplete in a sense that the original
equation of strength (eq. (11)) was derived without taking
into account the kinetics of deformation. Even if the present
de-pinning process does determine the strain-rate sensitivity
of UFG materials, a thermal activation event at a given
temperature should occur before a dislocation takes a semi-
circular shape. Therefore, more rigorous discussion based on
the kinetics of plastic deformation is needed. Nevertheless, it
is interesting to find that the present study can explain the
observed dependencies of strain-rate sensitivity and activa-
tion volume on grain size. We believe research along this line
will reveal whether or not the present analysis is really
applicable as a strength mechanism of the UFG materials.

Acknowlegment

This research was supported by a Grant-in-Aid for
Scientific Research on Priority Areas (18062002) by the
Ministry of Education, Culture, Sports, Science and Tech-
nology of Japan.

Appendix

Let L (¼ �; 2�; 3�; . . . ; n�) be a random variable and its
distribution function be described as PðLÞ. For our problem of
grain size d ¼ n� , L is the group of all the possible source
length and PðLÞmeans its frequency of appearance, as shown
in Fig. A·1. When hLi denotes the average (expectation) of L,
we have from eq. (9)

hLi ¼ ðnþ 2Þ�=3: ðA:1Þ

On the other hand, the variance �2 of PðLÞ is defined as47)

�2 � hðL� hLiÞ2i ¼ hL2i � hLi2: ðA:2Þ

Since

hL2i ¼
2�2

nðnþ 1Þ
½12 � nþ 22 � ðn� 1Þ

þ 32 � ðn� 2Þ þ . . .þ n2 � fn� ðn� 1Þg	

b

L /2ABC

boundary
pinning point

P Q

Fig. 6 When the bowing-out dislocation A pinned at boundary obstacles P

and Q overcomes the obstacle P by thermal activation, the dislocation A

moves locally to B. Then, the dislocation can automatically move to C and

further to cause long-range motion. The activation volume for this event is

defined as Bergers vector times the activation area bounded by

dislocations A and B.
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¼
2�2

nðnþ 1Þ
n
Xn
k¼1

k2 �
Xn�1

k¼1

kðk þ 1Þ2
" #

¼
ðnþ 1Þðnþ 2Þ

6
�2; ðA:3Þ

the variance can be calculated as

�2 �
ðn� 1Þðnþ 2Þ

18
�2: ðA:4Þ

As a next step, let us consider that N random variables
L1;L2; . . . ;LN with the same PðLÞ and the same average of
(A·1) exist. In our problem, N is the number of grains (all
with the same grain size) in a specimen. The central limit
theorem in statistics shows that when N is much larger than
unity, the difference between hLi in eq. (A·1) and the sample
average defined as ðL1 þ L2 þ . . .þ LNÞ=N obeys a normal
distribution function with the average zero and the variance
�2=N. For example, if an UFG specimen with d ¼ 100 nm
(n ¼ 10 for � ¼ 10 nm) has a volume of 1mm3, the number
of grains in the specimen is approximately N � 1012.
Therefore, the standard deviation (square root of the
variance) can be calculated from eq. (A·4) as ð�2=NÞ1=2 �
2:4� 10�6� . Since this value is much smaller than hLi ¼ 4�
from eq. (A·1), the normal distribution of the sample average
is highly concentrated around hLi and by far the most
probable value.
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Fig. A�1 Distribution function PðLÞ of a random variable L representing

the source length. The variable L takes values of �; 2�; 3�; . . . and n� with

its frequency of appearance n; n� 1; n� 2; . . . and 1, respectively.
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