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“Euclidean Design” a newly developed mathematical design theory has been used to reveal a heretofore hidden mechanism in the growth
of cubic Rh clusters composed of eight to twelve atoms. This is the first application of this advanced mathematics to atomic cluster science as a
powerful tool to optimize the geometrical structure. In the usual first principles calculation, initial structures have been given rather ad-hoc way
by trial and error basis. The method proposed in the present paper is systematic and theoretically without any limitation on the number of atoms.
For Rh clusters this report corrects the previously proposed structures [Y.-C. Bae, H. Osanai, V. Kumar and Y. Kawazoe: Phys. Rev. B 70 (2004)
195413], and shows that an eight atom cluster is a cube and that adding atoms on one side of the cubic cluster, growing to reach finally the two
cube connected structure of a twelve atom Rh cluster. [doi:10.2320/matertrans.N-M2011859]
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1. Introduction

Bae et al.1) found a cubic structure for the ground state of a
Rh cluster composed of eight atoms by the first principles
calculation as a strange structure for metallic clusters, which
have normally more compact form of Ih type. Although they
also have computed and shown structures in more than
eight atom cases, their result missed the systematic growth
mechanism. It seems strange that only eight atom cluster is
cubic and more than that there are no similar structures with
this special property in their discovery. We have thought
that there should be a series of better minimum geometric
structures of the Rh cluster in which the cubic structure of
eight atom does not stand alone. Up to the present, an initial
structure for the first principles calculation in search of a
stable atom cluster is given by guesses based on experience
and it is likely that it does not always reach to the global
minimum but to another local minimum. Some strategy is
needed to discover a global minimum among many local
minima and to understand the hidden growth mechanism of
atom clusters. Different global optimization algorithms have
been proposed and applied. For example, genetic algorithms
was used to study the evolution of nano-particles, where the
interactions between atoms, ions or molecules were described
by a variety of potential energy functions.2) K. Michaelian
et al. applied n-body Gupta potential to explore the most
stable isomers of nickel, silver and gold clusters.3) In these
algorithms, semi-empirical potentials are required. We have
recently developed a geometrical method, (Euclidean algo-
rithm), which is a suitable tool to generate discrete three
dimensional coordinate points on multiple spheres having
the same or different centers. This algorithm is applied to
predict initial guess structures of unknown atomic clusters.
By employing the Euclidean algorithm, we can, from a
mathematical viewpoint, obtain natural and good configu-
rations in a systematic way. For example, we can use it to find
good configurations like regular polygons and Fullerene

C60.4,5) By using this new mathematical technique, we have
found a hidden mechanism which has never been recognized
by the former try and error methods to find new cluster
structures. We have generated initial structure based on the
Euclidean algorithms, not by experience or common sense in
cluster science. Using the first principles calculations, we
have easily optimized these structures and found the better
ground state geometries than those previously proposed.
The present result shows that starting from the cubic eight
atom Rh cluster, the growth starts to add atoms one by one
reaching to the twelve atom cluster, which has a structure
of combined two cubes. In between, nine atom cluster is
composed simply one atom caps one side of the cube, ten
atom cluster have two atoms on one side, and eleven atom
cluster having three atoms on one side, and at last twelve
atom cluster is composed of two connected cubes. This paper
introduces a new mathematical method which might be
useful to structural optimization in cluster science as a new
guideline to generate initial structures before starting
ab initio calculation trying to optimize the structure around
the local minimum.

In Section 2 we will introduce the definition of Euclidean
designs and describe the algorithms to obtain the coordinates
of Euclidean designs. In Section 3 the computation results
will be shown.

2. Mathematical Formulation

2.1 Euclidean design
In this section we introduce the notion of Euclidean

designs, which is defined by Neumaier-Seidel6) in 1988 in the
mathematical design theory. First we describe some notation
used throughout this paper. Let X be a finite subset in the
d-dimensional Euclidean space Rd. Let fr1; r2; . . . ; rpg be the
radii of concentric spheres on which elements of X lie. Let
Si denote the sphere of radius ri centered at origin, and Xi

denote the set of points in X which appear on Si. ·i denotes
an OðRdÞ-invariant measure on Si where OðRdÞ is the
orthogonal group on R

d and «Si« denotes the surface area of+Corresponding author, E-mail: tagami@niit.ac.jp
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Si. ·i is unique up to a scalar multiplication. Also let w be a
weight function on X and put wðXiÞ :¼

P
x2Xi

wðxÞ. Let
PlðRdÞ be the vector space of polynomials of degree at most l
in d variables over R and jXj; jXij be the numbers of points
in X;Xi, respectively.
2.1.1 Definition II.1 (Neumaier-Seidel6))

Under the above notation, ðX;wÞ is a Euclidean t-design if
for any fðxÞ 2 PtðRdÞ, the following equality holds:

Xp
i¼1

wðXiÞ
jSij

Z
Si

fðxÞd· iðxÞ ¼
X
x2X

wðxÞfðxÞ: ð1Þ

For example, let w � 1 and

X1 :¼ fð0; 0; 1Þ; ð0; 0;�1Þg;

X2 :¼ � 1ffiffiffi
3

p ; 1; 0

� �
; � 1ffiffiffi

3
p ;�1; 0

� �
;

2ffiffiffi
3

p ; 0; 0

� �� �
:

Then X ¼ X1 [X2 is a Euclidean 2-design on two
concentric spheres.

2.2 Method
It is clear that X is a Euclidean t-design if and only if for all

monomials of degree at most t, equality (1) holds. Denote by
MtðRdÞ the set of monomials of degree t in d variables. For
example,M1ðR3Þ ¼ fx; y; zg,M2ðR3Þ ¼ fx2; y2; z2; xy; xz; yzg,
M3ðR3Þ ¼ fx3; y3; z3; x2y; x2z; xy2; y2z; xz2; yz2; xyzg and so
on. Consider the following function:

GðXÞ

¼
Xt
j¼1

X
f2MjðRdÞ

Xp
i¼1

wðXiÞ
jSij

Z
Si

fðxÞd· iðxÞ �
X
x2X

wðxÞfðxÞ
 !2

:

Here in the 3-dimensional case, jSij ¼ 4³r2i , and for the polar
coordinates system x ¼ ðri cos ª sin º; ri sin ª sin º; ri cos ºÞ,
0 � º � ³, 0 � ª � 2³, the invariant measure is given by
d· iðxÞ ¼ r2i sin ºdºdª. By the above, X is a Euclidean design
if and only if G(X) = 0. Euclidean designs do not necessarily
exist for all parameters d; t; jXj; . . . . For example, there does
not exist a Euclidean 4-design for a parameter d = 2, p = 1,
jXj � 4 [refer to Ref. 7) about such lower bounds on the
cardinality jXj for the existence of Euclidean designs]. But
we can always find what is very close to Euclidean designs as
what minimizes G(X). So we use such a configuration close
to Euclidean design as the initial guess to search for a
structure with lowest energy. For example it is known that
cubic structure has lowest energy [refer Ref. 1)] and cube is a
Euclidean 3-design on a sphere. The actual computation to
find coordinates of designs was done by the software Maple.
2.2.1 Example

Put d = 3, p = 2, r1 = 1, r2 = 1.2, t = 3, jX1j ¼ 2,
jX2j ¼ 5, w � 1. MiðR3Þ (i = 1, 2, 3) is given by the above.
Then carrying out the above minimization problem for
G(X) in an approximation, we obtain the following optimal
configuration

X1 ¼ f½0:37074; 0:37074;�0:85152�; ½�0:20120;�0:20120;�0:95866�g;
X2 ¼ f½�0:04774; 1:18213; 0:20071�; ½�1:19974; 0:024197;�0:00472�; ½�0:11598;�0:11598; 1:18873�;

½1:18213;�0:047745; 0:20071�½0:02419;�1:19974;�0:0047�g:

Here G(X) = 0.16877. Hence, to be exact, this is not a
Euclidean 3-design, but we can say that it is close one to
Euclidean design. This structure looks similar to 7a where the
numbering follows1) and it is known that this structure has
lowest energy among present-known ones with 7 rhodium atoms.

We can find Euclidean designs for arbitrary parameters
fd; p; ri; jXij ði ¼ 1; . . . ; pÞ; tg in the same way as the above
example, and use them as the initial data to calculate
structures with local minimum energy. In next section, we
will show the computation results.

3. Results and Discussion

The density functional theory formalism is performed to
study the structures of the Rh clusters with eight atoms to
twelve atoms, by using Vienna ab initio simulation package
(VASP).811) All atomic positions of the structures are fully
relaxed until the maximum atomic force is less than 0.01
eV/¡. For the exchangecorrelation functional, generalized
gradient approximation PBE (GGA-PBE) is applied.12,13) The
cutoff energy is set to be 229 eV, and only ¥ point is
calculated for the Brillouin-zone integration. The energy is
converged to an accuracy 1.0 © 10¹5 eV. Since the occur-
rence of the magnetism in Rh clusters is confirmed by the
experimental measurements in the temperature range from 60
to 200K, spin polarization calculations are used.14,15)

It was found by Y.-C. Bae et al. that the ground state of the
Rh cluster with eight atoms (Rh8) has the perfect cubic

structure.1) The energy of this ground state is 1.07 eV lower
than any other stable structures. The ground state of Rh9 is a
capping of cubic Rh8. But for the larger cluster, for example,
Rh10 and Rh11, their structures are totally different from
the cubic based structures. In their study, non-icosahedral
growth was obtained. However, the relaxation of the cluster
structures is strongly dependent on their initial geometrical
structures, especially when two stable structures are separated
by a high energy barrier. In our understanding, the initial
structures mainly come from experimental results, experi-
ence, intuition and sometimes from a guess. The complexity
increases with the number of atoms. Therefore, it is entirely
possible to miss some possible stable structures. To search for
the ground structures systematically, Euclidean designs are
introduced into our present study. Euclidean designs are used
to produce a series of prospective initial geometrical
structures, then these structures are relaxed at the level of
density functional theory.

The bulk of Rh is nonmagnetic material, however, in both
clusters of atoms and monolayer films, the reduction of
coordination number and higher symmetry enhance the
magnetization. The magnetic momenta of clusters are
dependent on the configurations.14,15) To understand the
growth mechanism of the Rh clusters, the clusters with eight
atoms (Rh8) to the clusters with twelve atoms (Rh12) are
studied. Three different initial guess structures are generated
by applying Euclidean designs. These structures are relaxed
until the criteria are satisfied. The relaxed structures are
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plotted in Fig. 1. It can be found that the ground state of Rh8
clusters is closed to a perfect cube, which coincides with
Y.-C. Bae’s result. The average bond length is about 2.40¡
and the magnetic moment of this structure is 12®B. The
geometrical structures, the energy differences and the
magnetic moments of other stable states are shown in
Fig. 1. Compared to the ground state, the magnetic moments
are same but the total energy of the ground state is about 1 eV
less than those of other structures. Three different relaxed Rh9
clusters are obtained by the same method. The capped cube is
the ground state. In this case, the cube is not the perfect cube.
The bond lengths between the capped atoms and its four
neighbors are about 2.552.56¡. The capped atom can
change the cubic lattice slightly. For example, the distance
between atom 1 and atom 2 [shown in Fig. 1(9a)] is 2.54¡
and the distance between atom 1 and atom 4 is 2.44¡. Both
of them are longer than the bond length of the Rh8 perfect
cube. The growth mechanism from Rh8 to Rh9 can be
understood. With one extra Rh atom approaching to one facet
of Rh8 cube, this atom can stay in the vertex position and
form a square pyramidal structure with its four nearest
neighbors. As reported by Y.-C. Bae, for the Rhn cluster, this
square pyramidal structure is ground state. However, the
cubic base is very stable, and the extra atom can only change
the cubic lattice slightly.

Rh10 is studied and the atomic structure of ground is
depicted in Figs. 1(10a)1(10c). It is found the neighboring
bicapped cube (NBC) structure as shown in Fig. 1(10a) is the
stable structure with the lowest energy. The cube is not a
perfect one. For the perfect cube Rh8, the lattice is 2.4¡ for

each bond. However, for NBC structure, the bond length are
different slightly. For example, the distance between atom 3
and atom 4 is about 2.5¡, but the distance between atom 3
and atom 7 is very closed to the prefect cube. This means the
existence of the capped atoms (atoms 1 and atom 2) reduce
the interaction strength between the atoms in the cube. The
atom 1 and the atom 3 to atom 6 form the square pyramid.
The distance between atom 1 and its neighboring atoms
are abound 2.57¡. NBC is a new structure which is not
considered in Ref. 1), and Y.-C. Bae et al. reported that the
ground structure of Rh10 was bicapped tetragonal antiprism
(BTA) which is shown in Fig. 1(10b). Both of these structures
are predicted by Euclidean design as the possible stable
geometrical structures. BTA is relaxed and it is found that the
total energy is about 0.013 eV greater than that of NBC. Since
the energy difference is very closed to limitation of predicted
properties by using DFT calculation, DMol3 is applied to
confirm the result. In the calculation, double numerical plus
diffusion (DND) basis set with pseudopotential VPSR and
PBE exchangecorrelation functional are used, and the result
is almost same but the energy difference is around 0.01 eV.
This suggest that NBC and BTA are nearly degenerate. It is
already indicated in Ref. 1) that the ground state of Rh9
cluster is capped cube. From the point view of cluster growth,
it is interesting to realize that the NBC structure comes from
the absorption of extra atom on the neighboring facet of Rh9
cube. Actually, it is possible that the 10th atom is deposited
on the opposite facet rather than the neighboring facet. This
opposite capped cube is not predicted by Euclidean designs.
To rule out this possibility, we relaxed this opposite capped

Fig. 1 Different atomic structures of Rh8 to Rh12 clusters after relaxation. Isomer (a) has the lowest energy which is considered as the
reference. The relative energies (eV) of other isomers and the corresponding magnetic moments (®B) are given below.
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cube and its energy is 1 eV greater than the NBC structure.
The conclusion that the occurrence probability of opposite
capped cube is very low can be drawn. The magnetic moment
of these two structures are 14®B.

For eleven atom clusters, Euclidean designs predict 5
different prospective structures. These Rh11 clusters are
relaxed, and three structures with the lowest energies are
depicted. The ground state of Rh11 is shown in Fig. 1(11a).
Interestingly, we can easily find that three atoms on the same
side of the cube. The average length of the cubic lattice is
about 2.4¡, which is equal to the lattice of cubic Rh8
structure. Atom 5 and atom 6 are on the top of atom 1 and
atom 4 respectively, the bond Rh5Rh1, the bond Rh6Rh4
are 2.4¡ approximately and the bond Rh5Rh6 is 2.41¡.
However atom 7 is in the bridge position and the distance
between atom 2 and atom 7 is equal to the distance between
atom 3 and atom 7. This cluster was not covered in Ref. 1),
in their study, the energy of the fused pentagonal pyramids
was the lowest. This fused pentagonal pyramids is predicted
in Euclidean designs method. The geometry structure after
relaxation is shown in Fig. 1(11b). The energy is about
0.2 eV greater than the cube based structure. Another
surprising finding for the Rh11 clusters is that the magnetic
moment of the fused pentagonal pyramids is 15®B, which
coincides with the Y.-C. Bae’s result, but magnetic moment
of cube based structure is only 9®B. The reduced value
satisfied with the experimental measurements.14,15) Finally,
the ground state of Rh12 is shown in Figs. 1(12a)1(12c). The
fused cubes, whose magnetic moment is 8®B, is found to be
the state with the lowest energy. Compared with Rh12 and
Rh11, it is very easy to understand that the growth mechanism
from Rh11 to Rh12. It is cubic based growth as well. One extra
atom approaches to the facet with three Rh atoms, and form
two fused cubes. The average bond length is about 2.39¡,
which is a little bit shorter than the perfect cube. The shorter
bond length means that the interaction between Rh atoms
becomes stronger and the corresponding structure is much
more stable. The binding energies and the magnetic moment
per atom of ground structure Rh8 to Rh12 are calculated. The
binding energy of Rhn is defined as

EbðRhnÞ ¼ �ðEðRhnÞ � n� EðRhÞÞ=n ð2Þ
where E(Rhn) is the total energy of structure Rhn, and E(Rh)
is the energy of single Rh atom. The result is plotted in
Fig. 2. From this figure, we find that with the increasing of
the atomic number, the binding energies get greater and
greater. The magnetic moment per atom decreases, with the
atomic number increases. For Rh12, the calculated result
0.67®B/atom is very closed to the experimental measure-
ment 0.59 « 0.12®B.

In this paper, a newly developed Euclidean designs are
introduced to study the growth of Rh clusters. Our
calculations show that the possible growth mechanism of
Rh clusters is cube based from Rh8 to Rh12. Since the perfect
cube structure is very stable, it is hard to change the structure
significantly by adding one or several extra atoms. Therefore,
the extra atoms can only form the bond with different facets
of the cube. We speculate that the ground states of Rh4n
should be the fused cube. Also in this paper, we set the
parameters as the weight constant and 2 concentric spheres.

The structures of Euclidean designs with the parameters
include almost all present-known stable structures in the case
of Rhodium metal cluseters. Moreover, by using Euclidean
designs, we can find new and more stable structures which
were not listed in Bae et al. But from the definition of
Euclidean designs, we can consider any weight on atoms and
more than 2 concentric spheres. Also we do not need to limit
the number of atoms when applying this algorithm. So the
method could be applicable to other kinds of atoms without
limitations to the number of atoms considered.
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