The Journal of Biochemistry
Online ISSN : 1756-2651
Print ISSN : 0021-924X
Two SecG Molecules Present in a Single Protein Translocation Machinery Are Functional Even after Crosslinking
Shushi NagamoriKen-ichi NishiyamaHajime Tokuda
Author information
JOURNAL FREE ACCESS

2000 Volume 128 Issue 1 Pages 129-137

Details
Abstract

SecG, a membrane component of the protein translocation apparatus of Escherichia coli, undergoes membrane topology inversion, which is coupled to the membrane insertion and deinsertion cycle of SecA. Eighteen SecG derivatives possessing a single cysteine residue at various positions were constructed and expressed in a secG null mutant. All the SecG-Cys derivatives retained the SecG function, and stimulated protein translocation both in vivo and in vitro. Inverted membrane vesicles containing a SecG-Cys derivative were labeled with a membrane-permeable or -impermeable sulfhydryl reagent before or after solubilization with a detergent. The accessibility of these reagents to the cysteine residue of each derivative determined the topological arrangement of SecG in the membrane. Derivatives having the cysteine residue in the periplasmic region each existed as a homodimer crosslinked through disulfide bonds, indicating that two SecG molecules closely co-exist in a single translocation machinery. The crossfinking did not abolish the SecG function and the crosslinked SecG dimer underwent topology inversion upon protein translocation.

Content from these authors
© The Japanese Biochemical Society
Previous article Next article
feedback
Top