The Journal of Biochemistry
Online ISSN : 1756-2651
Print ISSN : 0021-924X
Equilibrium and Kinetic Stability of a Hyperthermophilic Protein, O6-Methylguanine-DNA Methyltransferase under Various Extreme Conditions
Shingo NishikoriKentaro ShirakiMasahiro OkanojoTadayuki ImanakaMasahiro Takagi
Author information
JOURNAL FREE ACCESS

2004 Volume 136 Issue 4 Pages 503-508

Details
Abstract

In this work we have studied the equilibrium and kinetic stability of a hyperthermophilic protein, O6-methylguanine-DNA methyltransferase (Tk-MGMT), and its mesophilic counterpart AdaC, in various chemical solutions. In an unfolding experiment using guanidine hydrochloride (GdnHCI), the unfolding free-energy change of Tk-MGMT at 30°C was 42.0 kJ mol-1, and the half time for unfolding was 4.5×106 s, which is much slower than that of AdaC and representative mesophilic proteins. In unfolding experiments using methanol, ethanol, 2-propanol, trifluoroethanol (TFE), and sodium dodecyl sulfate (SDS), Tk-MGMT retained its native structure at high concentrations, despite the fact that these chemical solutions affect protein conformations in a number of different ways. Kinetic studies using TFE and SDS indicate that the unfolding rates of Tk-MGMT in these solutions are slow as in GdnHCI. Further, the results of a mutational experiment suggest that an ion-pair network plays a key role in this slow unfolding. This slow rate of unfolding under extreme conditions is a significant property that distinguishes Tk-MGMT from mesophilic proteins.

Content from these authors

This article cannot obtain the latest cited-by information.

© The Japanese Biochemical Society
Previous article Next article
feedback
Top