The Journal of Biochemistry
Online ISSN : 1756-2651
Print ISSN : 0021-924X
Subtilosin A, a New Antibiotic Peptide Produced by Bacillus subtilis 168: Isolation, Structural Analysis, and Biogenesis
Katsuhiko BABASAKIToshifumi TAKAOYasutsugu SHIMONISHIKiyoshi KURAHASHI
Author information
JOURNAL FREE ACCESS

1985 Volume 98 Issue 3 Pages 585-603

Details
Abstract

Subtilosin A, a new antibiotic produced by Bacillus subtilis 168, was extracted from culture medium with n-butanol and purified to homogeneity by a combination of gel filtration and thin-layer chromatography. The yield was 5.5mg from a liter of culture. It had bacteriocidal activity against some gram-positive bacteria. Amino acid analysis and mass spectrometry showed that it was a peptide with a molecular weight of 3398.9, consisting of 32 usual amino acid and some non-amino acid residues. Its amino- and carboxyl-termini were blocked. By analysis of the fragments obtained by partial acid hydrolysis, as well as by chymotryptic and thermolysin digestions of reduced and S-carboxymethylated samples and Achromobacter protease I digestion of performic acid-oxidized samples, the amino acid sequence was determined to be as follows: X-Gly-Leu-Gly-Leu-Trp-Gly-Asn-Lys-Gly-Cys-Ala-Thr-Cys-Ser-Ile-Gly-Ala-Ala-Cys-Leu-Val-Asp-Gly-Pro-Ile-Pro-Asp-Glx-Ile-Ala- Gly-Ala. The analyses of cross-linking structures revealed that there were linkages between the amino- and carboxyl-termini and between the Cys-19 and the Glx-28 residues through an unknown residue with a residue weight of 163. Consequently, subtilosin A was deduced to be a cyclic peptide antibiotic with a novel cross-linking structure.
The production of subtilosin A begins at the end of vegetative growth and finishes before spore formation. Studies on the correlation between the production of subtilosin A and spore formation with decoyinine in the original strain and in asporogenous mutants of B. subtilis 168 suggested that there was no close correlation between the two phenomena. The production of subtilosin A was repressed by inhibitors of protein and RNA synthesis in contrast to that of many other antibiotic peptides, suggesting that it is synthesized by the mechanism of usual protein synthesis.

Content from these authors
© The Japanese Biochemical Society
Next article
feedback
Top